Petrology of the Benson Sand in Barbour, Upshur, Lewis and Harrison Counties, West Virginia

Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science
in the
Faculty of the Graduate School
of
West Virginia University

by Scott Alan Roth B. S.

Morgantown West Virginia 1975

Abstract

The Upper Devonian Benson sand is one of the better gas producing sands in central West Virginia. Generally, the Benson is no coarser than a very fine sand and most of the unit is an argillaceous siltstone. The sandstone was apparently deposited as an offshore marine bar west of the Late Devonian shoreline. Winnowing action exerted by the sea as it regressed westward has removed part of the argillaceous matrix from portions of the sandstone and left the remaining argillaceous material unevenly distributed. The amount of argillaceous matrix seems to be the primary factor controlling the presence of porosity in the Benson sand. abundant argillaceous matrix generally is associated with less porosity. Diagenesis has also affected the primary porosity of the Benson. Constituents reducing porosity included secondary quartz overgrowths, feldspar overgrowths, carbonate and minor amounts of barite. Pressure solution has also decreased porosity, especially in the more argillaceous samples where clays appear to enhance the process. However, thin argillaceous coatings on some grains have inhibited the formation of overgrowths and thus preserved porosity. Also, some feldspar is partially dissolved producing secondary porosity. Carbonate cement may have been leached from certain areas because quartz grains around some pores are ragged, as if corroded by earlier carbonates. few millimeters across may have resulted from leaching of

carbonates which had been in the form of fossil shells.

However, the majority of pores are lined with euhedral quartz overgrowths which indicate free growth into empty voids.

The best reservoirs for hydrocarbons, therefore, are likely to be in the better developed offshore marine bar sequences where winnowing has removed much of the clay matrix. Suitable porosity is also more probable where solution of carbonate and feldspar is prominent or clay coatings are important in preserving porosity.

Table of Contents

Acknowledgements	Page - ii
Abstract	
Introduction	
Purpose and Scope	- 1
Geographic and Geologic Setting	- 3
Previous Stratigraphic and Petrographic Work	- 6
Stratigraphy	- 8
Methods of Tovestigation	13
Core Analysis	13
Thin Sections	15
Modal Analysis	15
Grain Size Measurement	18
Examination for Feldspar by the Immersion Method	. 19
X-Ray Diffraction Analysis	19
Low Temperature Ashing	20
Stratigraphic Cross Sections	22
Isolith Map	24
Statistical Analysis	29
Petrographic Composition	31
Detrital Constituents	31
Quartz	31
Argillaceous Material	32
Organic Material	33
Feldspar	34
Micas	34

Heavy Minerals	34
Diagenetic Changes	35
Dolomite	35
Quartz	37
Feldspar	37
Barite	40
Point Count Data	41
Well #11192	41
Well #11199	46
Well #10612	50
Well #10746	53
Factors Controlling Porosity and Permeability	56
Stratigraphic Cross Sections	66
A-A'	67
B-B'	69
C-C'	69
D-D'	72
E-E'	74
Isolith Map Trends	76
Interpretation of Stratigraphic Data	80
Summary and Conclusions	84
References	87
Appendices	89
Appendix A. X-Ray Diffractograms	89
Appendix B. Low Temperature Asher Results	92
Appendix C. Contingency Chi-Square Tables	93

	Appe	endi	хD.	Grain	Size	Data		 96
Vita								 98
Appro	oval	of	the	Examini	ng C	ommitt	-66	 99

<u>List of Tables</u>

ple	age
1. Comparison of theoretical σ and actual σ for selected thin sections from the four Benson cores.	17
2. Minerals identified on X-ray diffractograms	21
 Point count data from well #11192 (permit number: Lewis-1704) 	42
4. Point count data from well #11199 (permit number: Barbour-502)	47
5. Point count data from well #10612 (permit number: Barbour-163)	51
6. Point count data from well #10746 (permit number: Barbour-243)	54
7. Contingency chi-square test results for argillaceous matrix vs porosity	59

<u>List of Figures</u>

Figure
1. Study area location
2. West Virginia stratigraphic column
3. Upper sand of the Benson zone core locations 10 identified by Consolidated Gas well numbers
4. Stratigraphic cross section locations 23
 Stratigraphic cross section C-C' correlation 25 using the radioactive X datum
 Stratigraphic cross section D-D' correlation 26 using the radioactive X datum
7. Determination of sand thickness from a 27 gamma ray log
8. Benson sand well locations used for the 28 stratigraphic study
9. Euhedral dolomite rhomb from well #11192 36
10. Secondary quartz overgrowth from well #11192 38
11. Secondary quartz overgrowth from well #11192 38
12. Secondary feldspar overgrowth from 39 well #11199
13. Feldspar solution from well #11192 39
14. Point count data from well #11192 (permit 43 number: Lewis-1704)
<pre>15. Point count data from well #11199 (permit 48 number: Barbour-502)</pre>
<pre>16. Point count data from well #10612 (permit 52 number: Barbour-163)</pre>
17. Point count data from well #10746 (permit 55 number: Barbour-243)
18. Pressure solution shown by quartz and mica 64

Figure	P	age
19.	Pressure solution between quartz and argillaceous material	64
20.	Stratigraphic cross section A-A'	68
21.	Stratigraphic cross section B-B'	70
22.	Stratigraphic cross section C-C'	71
23.	Stratigraphic cross section D-D'	73
24.	Stratigraphic cross section E-E'	75
25.	Isolith map of the upper sand of the Benson zone	77
26.	Three arcuate trends in the upper sand of the Benson zone isolith map	78