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ABSTRACT

Upper Devonian Chemung interval sediments in northern
West Virginia prograded westward with time and were confined
by basin closure to the south. Sedimentation patterns were
influenced by displacement of underlying basement features
along the Rome Trough, the inferred Eastern Cross-Over Rift,
Pocono Dome, and the Weston Cross-Strike Structural
Discontinuity. These observations are supported by the
construction of a regional cross-section network and isopach
maps based on 1662 well logs in a 90 quadrangle (4528 square
mile) area.

Thick intervals of stata defined between regionally
correlatable transgressive shale markers can be traced
westward to their basin plain shale equivalents and eastward
to their correlative outcrops. Between the Alexander and
the younger Warren Sands, isopach mapping identified
depoaxes for three intervals and showed eastward thickening
of five others within the study area. Commonly, depoaxes
and isopach strike trends are parallel to the Rome Trough
and depositional patterns indicate that its axis coincided
with a basinal setting throughout much of the Upper
Devonian. Isopach mapping also shows that sedimentation
Wwithin the Rome Trough was restricted south of the
northwestward projection of the Weston CSD (Lewis County)
during this time, while certain units (such as the Lower and

Upper Benson) are anomalously prograded to the north of this
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feature. A lower basement block within the Rome Trough
north of the CSD is proposed to have controlled this
gsedimentation.

Synthesis of core observations, regional map patterns,
and environmental indicators displayed in the relatively
more proximal surface exposures near Elkins (Randolph
County) resulted in facies interpretations ranging frqm
anoxic basin plain to delta front environments for units
from the top of the Alexander Sand to the lower portion of
Riley interval. Two end-member storm deposit models
inferred from outcrop observations include "amalgamated
proximal" and "non-amalgamated distal" varieties. The
interval from the top of the Alexander to base of the Lower
Benson represents the construction of a shaly shelf bulge
early in the history of Catskill clastic wedge and forms a
foundation for subsequent Benson deposition.

The Benson interval, an important gas reservoir in the
region, was chosen for detailed analysis. Its evaluation
illustrates the contribution of just a few discrete
depositional facies to Upper Devonian sedimentation. In
addition to mapping and outcrop observations, analysis
included examination of 5 Benson cores from the western half
of the subsurface study area. Individual core samples were
sorted by their well log facies which corresponded to 3
distinct lithological types. These included the bioturbated

8ilty Lower Benson, the channelized sandy Upper Benson, and
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the shales of the overlying transgressive lower portion of
the Riley interval. Petrographic characteristics and
macroscopic features exhibited by these samples and cores
provided a "finger print" characterizing each facies,
showing not only the differences between them, but also the
degree of variation within any one particular log facies.

A shelf depositional model is proposed for the
bioturbated siltstones of the Lower Benson with a position
below storm wave base, and having distant deltaic sources to
the northeast and east. A more comprehensive model for the
Upper Benson is possible as a result of this study. 1Its
components include: (1) transitional to strike-oriented
trends in the proximal (eastern) setting where wave
influence and geostrophic currents are important, (2)
parallel dip-oriented shelf slope trends (controlled by
downstepping of the eastern edge of the Rome Trough), and
(3) distal (western) strike-oriented trends that are non-dip
oriented and in places parallel to the basin axis.

Storm wave contact with the seabottom in the proximal
prodelta to delta front setting is proposed as the mechanism
responsible for entrainment of gsediments into the water
column and subsequent wave-base influenced deposition in the
proximal shelf, dip-oriented density current deposits on the
shelf slope, and channel/channel-fringe progradation onto
the basin plain., This deposition was probably associated

with a relative low-stand of sea level.



Lithologies indicate that the lowermost portion of the

Riley interval represents channel abandonment and basin

plain deposition associated with a transgressive rise in sea
level following the deposition of the Benson units.

Future exploration and development of the important

Upper Benson "Sand" should be aided by using these

interpretations and understanding the nature of its

enclosing rocks.
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SUMMARY AND CONCLUSIONS

The sedimentation and stratigraphy of Upper Devonian
rocks of northern West Virginia were based on geophysical
logs from 1662 wells, cores of the Benson interval from five
wells, and outcrops near Elkins, West Virginia. The main
émphasis of this study was the Benson "Sand" and its
immediately enclosing strata, although this basin analysis
examined the stratigraphic interval from the Onondaga to the
Warren. Stratigraphic cross sections established regional
correlations and nine different isopach maps were
constructed for various intervals. These cross sections and
maps were supplemented with core studies by company
consultants. My analysis of all these data resulted in the
conclusions summarized below, beginning with conclusions

based on mapping and map interpretation.

1. Depoaxes are inferred east of the study area from
thickness maps of the Onondaga to Warren (Plate 6),
Alexander to base of Lower Benson (Plate 11), Alexander to
top of Upper Benson (Plate 12), Gross (Total) Benson (Plate
13), and Lower Benson (Plate 14) intervals.

2. Depoaxes within the study area lie parallel to the
eastern edge of the Rome Trough for the Alexander to Warren
(Plate 7), Benson to Bradford (Plate 8), and Bradford to

Warren (Plate 9) intervals. These depoaxes are summarized

on Plate 10,
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3. Basinward (westward) progradation of progressively

younger intervals can be observed on the isopach maps and

the regional dip cross sections (Pocket Exhibit 3).

4. Based on most intervals mapped, the basin exhibits

closure to the south and opens northward within the study
area, in agreement with regional basin-wide patterns for the
Silurian and Devonian as illustrated in Figures 8 through

12.

5. Thick stratigraphic intervals consist of numerous
discrete facies and therefore the individual trends,

character, and depoaxes of these individual facies {other

than the Benson) are sacrificed in order to show generalized

SN attributes. 1Individual facies maps of the Benson, on the

L other hand, illustrate the trends and thickness of a

relatively thin interval.

=aid

6. A lobate prograding slope apron is indicated by the

S41IH

thickness map of the Alexander to base of Lower Benson

Y AHTIE

Interval (Plate 11). These deposits constructed a "shelf

bulge", upon which the Benson "Sands" accumulated.

o HTE%

7. A new relatively deep-water distal shelf
interpretation (including aerobic conditions and deposition

below storm wave base) is proposed for the massive and

bioturbated siltstones of the Lower Benson (Figure 15).

Deltaic sources are evidenced by map trends of this unit

(Plate 14) to the east and northeast of the study area.
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8. A more comprehensive regional picture for Upper
Benson deposition is indicated from isopach maps which
include proximal (eastern) transitional/strike-oriented
trends, parallel dip-oriented shelf slope trends, and
basinal (western) non-oriented or strike-oriented trends as
illustrated by Plates 15a, b, and c. A depositonal model is
proposed for the Upper Benson (Figure 17).

9. The Rome Trough, shown in Plate 2 along with other
basement features, formed a sag that defines the basinal
position for several Upper Devonian sedimentary intervals.
Structural block faulting, downward along the eastern edge
of this feature, controlled the position of shelf slope
sedimentation. Sedimentation patterns also indicate
differential block faulting within the Rome Trough north and
south of the Weston CSD (Cross Strike Discontinuity).

10. Some sedimentation patterns indicate that
sediments preferentially funneled through the Eastern Cross-
Over Rift in their dispersal toward the Rome Trough. Other
patterns show thin to absent deposition over the West
Virginia (Pocono) Dome (which probably was activated by
tilting of a basement block), and thickness trends
superimposed over the Weston CSD (Plate 2). The evidence
for syn-tectonic sedimentation (growing structures) is
significant.

11. The abundance of small displacement thrust and
reverse faults (Plate 5) trending parallel to Alleghanian

folds (Plates 3 and 4) causes anomalous local thickness
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values and their recognition is necessary for accurate

stratigraphic analysis and interpretations.

As illustrated by Cross Section "X" (Pocket Exhibit 4),

the subsurface intervals analyzed can be correlated eastward

to the Elkins, West Virginia outcrop. Outcrop analysis

provides important insights about depositional environments

for these rocks.

e e v e e T THS AT

1. Correlation confidence was increased in this study

‘ E by the availability of logs of a new well located east (four

miles proximal) of the Elkins outcrop.

——

r———
A e, el o et et -

. : 2. Rocks show more proximal environments of deposition
in the outcrop compared with the subsurface sections

starting 9 miles to the west in the study area.

% 3. Progradational sequences such as the Pound Member,
and upper part of the Red Lick Member have been
distinguished from retrogradational sequences such as the
E ‘ Blizzard Member and the lower portion of the Red Lick
Member.

4, Storm deposits recognized in the outcrop were
grouped into two tyées including 1) amalgamated proximal

storm deposits (Figure 6) and 2) non-amalgamated distal

storm deposits (Figure 7). Type 2 (distal facies) is

interpreted to form in deeper and more offshore seas than

type 1 (proximal facies).
5. Transgressive shale markers at the top of the
Briery Gap Member (Alexander) and Pound Member (Benson) can

be traced westward across the state and allow the
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correlation of equivalent basin shales, driller sands, and
eastern outcrop units (Figure 3).

Core anlaysis permitted a detailed study of a select

interval of deposition (the Benson interval) within the
lower part of the Catskill clastic wedge. The following
conclusions were drawn.

1. Based on petrographic and macroscopic properties,
"finger print" characteristics of the shaly lowermost part
of the Riley Interval (facies "a"), the sandy Upper Benson
(facies "b"), and the silty Lower Benson (facies "e") were
identified that augmented the interpreted depositional
environments of these intervals established from their
mapped thickness and lithological patterns.

2. Comparison of rock properties from core analysis
showed both the differences between facies, and within
facies, observable from well to well.

Based on the data analyzed, a depositional model for

the Lower and Upper Benson intervals is proposed (Figures 15
and 17). Elongate marine belts of sandstone/siltstone
change orientation east to west from interpreted shoreline
to basin axis in the following manner: 1) strike trends
dominate shelf sedimentation between fair-weather and storm
wave base; 2) dip trends dominate slope sedimentation
coinciding with the eastern edge of the Rome Trough and
sedimentation caused by turbidity flows; 3) strike trends
for axial flow of waning turbidity flows occur along the

basin axis within the area of the Rome Trough.
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An understanding of the Benson using these
interpretations explains the mapped patterns and

depositional character of the Benson "Sands", and should aid

future exploration and development of the important Upper

Benson gas reservoir rock.



