

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

PERMIT MODIFICATION APPROVAL

July 02, 2014

EQT PRODUCTION COMPANY POST OFFICE BOX 280 BRIDGEPORT, WV 26330

Re: Permit Modification Approval for API Number 8510097, Well #: 515279

Extended freshwater casing

Oil and Gas Operator:

The Office of Oil and Gas has reviewed the attached permit modification for the above referenced permit. The attached modification has been approved and well work may begin. Please be reminded that the oil and gas inspector is to be notified twenty-four (24) hours before permitted well work is commenced.

Please call James Martin at 304-926-0499, extension 1654 if you have any questions.

Sincerely.

Gene Smith

10

Regulatory/Compliance Manager

Office of Oil and Gas

July 1, 2014

Mr. Gene Smith West Virginia Department of Environmental Protection Office of Oil and Gas 601 57th Street SE Charleston, WV 25304

Re: Modification of 47-08510093, 08510094, 08510095, 08510096, 08510097

Dear Mr. Smith,

EQT would like to modify the depth of the fresh water casing (13 3/8") from 973' to 1075'. This will be below the current elevation of 1119'due to the potential show of red rock. I have enclosed a new WW-2B, well schematics, and rec plan for your review.

If you have any questions, please do not hesitate to contact me at (304) 848-0076.

Sincerely,

Vicki Roark

Permitting Supervisor-WV

Lell R

Enc.

4708510097

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS W.VA. CODE §22-6A - WELL WORK PERMIT APPLICATION

60	_	
3	/2	8

1) Well Operator: EQT Product	ion Company			085	1	539	
STATE OF THE STATE			Operator ID	County	District	Quadrangle	
2) Operator's Well Number:	5	15279		_Well Pad Name	e:	PEN15	
3) Farm Name/Surface Owner : _	Deway	ne Britton	et ux	Public Road Ad	cess:	WV-74	
4) Elevation, current ground:	1,119.0	Elevat	ion, proposed p	ost-construction:	1,119	.0	
5) Well Type: (a) Gas	Oil	Un	derground Stora	ige			
Other							
(b) If Gas:	Shallow		Deep				
	Horizontal	•					
6) Existing Pad? Yes or No:	yes						
7) Proposed Target Formation(s),	Depth(s), Anticip	ated Thick	nesses and As	sociated Pressur	e(s):		
Target formation is Marcellus	at a depth of 6395' v	with the antic	pated thickness to	be 50 feet and anticip	ated target press	sure of 4176 PSI	
8) Proposed Total Vertical Depth:				6,395			
9) Formation at Total Vertical Dep				Marcellus			
10) Proposed Total Measured Dep				11,279			
11) Proposed Horizontal Leg Leng			-	3,020	Market Carlot		
12) Approximate Fresh Water Stra				, 163, 242, 394,			
13) Method to Determine Fresh W							
14) Approximate Saltwater Depths	:		165	2, 1943, 2521			
15) Approximate Coal Seam Depti	ns:		14	4, 273, 379, 744			
16) Approximate Depth to Possible	Void (coal mine	, karst, oth	er):		None repo	orted	
17)Does proposed well location adjacent to an active mine?	contain coal sea	ms directly	overlying or				
(a) If Yes, provide Mine Info:	Name:						
No. 4 and Alexand Property and a transfer of the second							
	re-entantament/						

Page 1 of 3

Dise

WW - 6B (3/13)

CASING AND TUBING PROGRAM

18) TYPE	Size	New	Grade	Weight per	FOOTAGE:	INTERVALS:	CEMENT:
ITPE	SIZE	or Used		11.	for Drilling	<u>Lel(in Well</u>	Fill- up (Cu.Ft.)
Conductor	20	New	MC-50	81	40	40	38 C.T.S.
Fresh Water	13 3/8	New	MC-50	54	1,075	1,075	931 C.T.S.
Coal							
Intermediate	9 5/8	New	MC-50	40	5,330	5,330	2,092 C.T.S.
Production	5 1/2	New	P-110	20	11,279	11,279	See Note 1
Tubing	2 3/8		J-55	4.6			May not be run, if run will be set 100' less than TD
Liners							

TYPE	Size	Wellbore Diameter	<u>Wall</u> Thickness	<u>Burst</u> Pressure	<u>Cernent</u> <u>Type</u>	Cement Yield (cu. fl./k)
Conductor	20	24	0.375	•	Construction	1.18
Fresh Water	13 3/8	17 1/2	0.38	2,480	1	1.21
Coal		<u> </u>				
Intermediate	9 5/8	12 3/8	0.395	3,590	1	1.21
Production	5 1/2	8 1/2	0.361	12,640	•	1.27/1.86
Tubing						
Liners						

<u>Packers</u>

	1	 	1	
Kind:	N/A			
Sizes:	N/A			
Depths Set:	N/A			

Note 1: EQT plans to bring the TOC on the production casing cement job 1,000' above kick off point, which is at least 500' above the shallowest production zone, to avoid communication.

Page 2 of 3

Dant woon

(3/13)

19) Describe proposed well work, including the drilling and plugging back of any pilo	t noie.
Drill and complete a new horizontal well in the Marcellus Formation. The vertical drill to go down to	an approximate depth of 5389'.
Then kick off the horizontal leg into the Marcellus using a slick water frac.	
20) Describe fracturing/stimulating methods in detail, including anticipated max pres	sure and max rate:
Hydraulic fracturing is completed in accordance with state regulations using water recycled from previous	sly fractured wells and obtained from
freshwater sources. This water is mixed with sand and a small percentage (less than 0.3%) of chemicals	(including 15% Hydrochloric acid,
gelling agent, gel breaker, friction reducer, biocide, and scale inhibitor), referred to in the industry as a "sli anticipated treating pressures are expected to average approximately 8500 psi, maximum anticipated tre	eating rates are expected to average
approximately 100 bpm. Stage lengths vary from 150 to 300 feet. Average approximately 200,000 barr	els of water per stage. Sand sizes
vary from 100 mesh to 20/40 mesh. Average approximately 200,000 pounds of sand per stage.	
21) Total area to be disturbed, including roads, stockpile area, pits, etc, (acres):	no additional disturbance
22) Area to be disturbed for well pad only, less access road (acres):	±.3 ac
23) Describe centralizer placement for each casing string.	
 Surface: Bow spring centralizers – One at the shoe and one spaced every 500'. Intermediate: Bow spring centralizers – One cent at the shoe and one spaced every 	,500'
Intermediate: Bow spring centralizers— One central the shoe and one spaced every Production: One spaced every 1000' from KOP to Int csg shoe	7 300 .
24) Describe an coment additive account	ype 1 Cement): 0-3% Calcium Chloride
Used to speed the setting of cement slurries. 0.4% flake. Loss Circulation Material (LCM) is used to combat the loss of the cement slurry to	a thief zone.
Intermediate (Type 1 Cement): 0-3% Calcium Chloride. Salt is used in shallow, low temperature f	ormations to speed the setting of cement
slurries. 0.4% flake. Loss Circulation Material (LCM) is used to combat the loss of whole drilling	ng fluid or cement slurry (not filtrate)
to a thief zone.	
Production:	
Lead (Type 1 Cement): 0.2-0.7% Lignosulfonate (Retarder). Lengthens thickening time.	
0.3% CFR (dispersant). Makes cement easier to mix.	
Tail (Type H Cement): 0.25-0.40% Lignosulfonate (Retarder). Lengthens thickening time.	
0.2-0.3% CFR (dispersant). This is to make the cement easier to mix.	
60 % Calcuim Carbonate. Acid solubility.	
0.4-0.6% Halad (fluid loss). Reduces amount of water lost to formation.	
0.4-0.6% Halad (fluid loss). Heddles amount of water lost to formation.	
25) Proposed borehole conditioning procedures. <u>Surface</u> : Circulate hole clean (Approxima	
one full joint until cuttings diminish at surface. When cuttings returning to surface diminish, co	ntinue to circulate an additional 5
minutes. To ensure that there is no fill, short trip two stands with no circulation. If there is fill, b	oring compressors back on
and circulate hole clean. A constant rate of higher than expected cuttings volume likely indica	tes washouts that will not clean up.
Intermediate: Circulate hole clean (Approximately 30-45 minutes) rotating & reciprocating one full	joint until cuttings diminish at
surface. When cuttings returning to surface diminish, continue to circulate an additional 5 min	utes. If foam drilling, to enhance
hole cleaning use a soap sweep or increase injection rate & foam concentration.	
Production: Pump marker sweep with nut plug to determine actual hole washout. Calculate a gauge	e holes bottoms up volume.
Perform a cleanup cycle by pumping 3-5 bottoms up or until the shakers are clean. Check volu	
the shakers every 15 minutes.	

Page 3 of 3

^{*}Note: Attach additional sheets as needed.

Weil Schematic EQT Production

Well Name County State 515279 (PEN15H10) Rachie West Virgina

Elevation KB: Target Prospect Azimuth Vertical Section 1132 Marcelus 335 3780

					Vertical Section	
o. —		۱ ^۵	4	— 0.	Hote Size 24" - 20" Conductor at 40" B4 Size 17.5"	
500' —				— 500'	TOC • Surfaço	
1,000° — 1,040°	Fresh Water Base Base Red Rock			— 1,000 °	13 3/8", MC-50, 54.5# @ Bn Size 12.375"	1,075° fi MD
1,500' —				— 1,500°		
	Maxton Big Lime Big Injun			— 2,000°		
2,375° 2,500° — _{2,580°}				 2,500°		
2.719' 2.801' 3.000' — 2.844' 2.926'	-Fifty loot -Thirty foot			— 3,000 .		
	-Warren -Speechloy		i	— 3,500°		
4,000' — _{4,195'}	-Balltown A			— 4,000°		
4,500° — _{4,580°}	-Яшеу			— 4,500°		
5,000' — ^{4,951'}				— 5,000°	9 5/8", MC-50, 40# @	Surface 5,330° ft MD
	-Alexander Int. csg pl	۵	_	— 5,500°	B# Stre B.5"	
6,216' 6,275' 6,326'	-Sonyea -Middlesex -Genesee -Geneseo			— 6.000°	KOP = 10,0eg DLS Land &	5,369° N MD
	-Tufly -Hamilton -Marcellus Onondaga			 6,500°	5 1/2° P-110 204	6,395' N TVD 10,779' N MD 6,395' N TVD
7,000' —				— 7,000°		
7,500° —				— 7,500°		
8,000				8,000		

4708510097

Office of Oil and Cas

MAR 2 8 2014

WAY Department of
Environmental Presession

