

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

June 26, 2013

WELL WORK PERMIT

Horizontal 6A Well

This permit, API Well Number: 47-8510041, issued to ANTERO RESOURCES APPALACHIAN CORPORATION, is evidence of permission granted to perform the specified well work at the location described on the attached pages and located on the attached plat, subject to the provisions of Chapter 22 of the West Virginia Code of 1931, as amended, and all rules and regulations promulgated thereunder, and to all conditions and provisions outlined in the pages attached hereto. Notification shall be given by the operator to the Oil and Gas Inspector at least 24 hours prior to the construction of roads, locations, and/or pits for any permitted work. In addition, the well operator shall notify the same inspector 24 hours before any actual well work is commenced and prior to running and cementing casing. Spills or emergency discharges must be promptly reported by the operator to 1-800-642-3074 and to the Oil and Gas inspector.

Please be advised that form WR-35, Well Operators Report of Well Work is to be submitted to this office within 90 days completion of permitted well work, as should form WR-34 Discharge Monitoring Report within 30 days of discharge of pits, if applicable. Failure to abide by all statutory and regulatory provisions governing all duties and operations hereunder may result in suspension or revocation of this permit and, in addition, may result in civil and/or criminal penalties being imposed upon the operators.

In addition to the applicable requirements of this permit, and the statutes and rules governing oil and gas activity in WV, this permit may contain specific conditions which must be followed. Permit conditions are attached to this cover letter.

Per 35CSR-4-5.2.g this permit will expire in two (2) years from the issue date unless permitted well work is commenced. If there are any questions, please feel free to contact me at (304) 926-0499 ext. 1654.

James Martin

Chief

Operator's Well No: BLANCHE UNIT 3H

Farm Name: HAYMOND, ANNIE B., ET AL

API Well Number: 47-8510041

Permit Type: Horizontal 6A Well

Date Issued: 06/26/2013

PERMIT CONDITIONS

West Virginia Code § 22-6A-8(d) allows the Office of Oil and Gas to place specific conditions upon this permit. Permit conditions have the same effect as law. Failure to adhere to the specified permit conditions may result in enforcement action.

CONDITIONS

- 1. If the operator encounters an unanticipated void, or an anticipated void at an unanticipated depth, the operator shall notify the inspector within 24 hours. Modifications to the casing program may be necessary to comply with W. Va. Code § 22-6A-5a (12), which requires drilling to a minimum depth of thirty feet below the bottom of the void, and installing a minimum of twenty (20) feet of casing. Under no circumstance should the operator drill more than fifty (50) feet below the bottom of the void or install less than twenty (20) feet of casing below the bottom of the void.
- 2. When compacting fills, each lift before compaction shall not be more than 12 inches in height, and the fill material shall be within plus or minus 2% (unless soil test results show a greater range of moisture content is appropriate and 95% compaction can still be achieved) of the optimum moisture content as determined by the standard proctor density test, ASTM D698, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort. Each lift must meet 95 % compaction of the optimum density based on results from the standard proctor density test of the actual soils used in specific engineered fill sites. Each lift shall be tested for compaction, with a minimum of two tests per lift per acre of fill. All test results shall be maintained on site and available for review.
- 3. Operator shall install signage per § 22-6A-8g (6) (B) at all source water locations included in their approved water management plan within 24 hours of water management plan activation.
- 4. Oil and gas water supply wells will be registered with the Office of Oil and Gas and all such wells will be constructed and plugged in accordance with the standards of the Bureau for Public Health set forth in its Legislative rule entitled *Water Well Regulations*, 64 C.S.R. 19. Operator is to contact the Bureau of Public Health regarding permit requirements. In lieu of plugging, the operator may transfer the well to the surface owner upon agreement of the parties. All drinking water wells within fifteen hundred feet of the water supply well shall be flow tested by the operator upon request of the drinking well owner prior to operating the water supply well.
- 5. Pursuant to the requirements pertaining to the sampling of domestic water supply wells/springs the operator shall, no later than thirty (30) days after receipt of analytical data provide a written copy to the Chief and any of the users who may have requested such analyses.

Addendum for Antero pads in Ritchie County, WV

Blanche Unit 1H	Permit #47-085-10036	Eddy Pad
Blanche Unit 2H	Permit #47-085-10037	Eddy Pad
Blanche Unit 3H	Permit #47-085-10041	Eddy Pad

The following outlines the process to be undertaken by Antero Resources prior to and during completion process of wells.

Investigate all wells within 1320' of new wells when within the defined Alexander to Marcellus <1500' window and all Marcellus vertical wells

- contact operator of all wells
- confirm well status, producing horizon, well completion/stimulation information
- discuss plans to stimulate the horizontal Marcellus wells and the plans for monitoring
 - Potential impact on shallow wells
- make sure all vertical Marcellus to Alexander wells have adequate wellhead equipment,
 - Including pressure gauges
- provide shallow well operator with frac dates and monitor during stimulation
- if well waters out during frac, shut it in until after stimulations, and install adequate well
 - Control equipment prior to swabbing in the impacted shallow well
- •Control fracturing parameters during job to limit fracture height growth
 - limit rate and limit pressures for each segment of fracturing stages
- Tracers demonstrate that we rarely reach offset wells at 660' offset
 - -will use tracers at each lateral

RECEIVED
Office of Oil and Gas

MAY 08 2013

WV Department of Environmental Protection

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS WELL WORK PERMIT APPLICATION

	WELL WORK PE	ERMIT APPLICA	TION	0	63ª
1) Well Operator:	Antero Resources Appalachian Corporation	494488557	085- Ritchie	Clay	Pennsboro 7.5
24		Operator ID	County	District	Quadrangle
2) Operator's Well	Number: Blanche Unit 3H		Well Pad Nam	e: Existing Eddy	y Pad
3 Elevation, currer	nt ground: 971' Ele	evation, proposed	post-construc	tion:	971'
4) Well Type: (a)	Gas Oil Oil	Undergroun	d Storage	-	4
(b) I	f Gas: Shallow Horizontal	Deep			
5) Existing Pad? Y	es or No: Yes				
	Formation(s), Depth(s), Anticipate VD, Anticipated Thickness- 75 Feet, Associated Press		nd Associated	Pressure(s):	
7) Proposed Total	Vertical Depth: 6600' TVD				
8) Formation at To	tal Vertical Depth: Marcellus				
9) Proposed Total N	Measured Depth: 14,400' MD				
10) Approximate F	resh Water Strata Depths: 13	37'			
11) Method to Dete	ermine Fresh Water Depth:	nna Unit 3H (API# 47-085-	-10015)		
12) Approximate S	altwater Depths: 1536				
13) Approximate C	oal Seam Depths: 611', 643'			*	
14) Approximate D	Pepth to Possible Void (coal mine,	karst, other):	None antic	ipated V	
A SECTION AND A SECTION AND ASSESSMENT OF THE PERSON OF TH	well location contain coal seams of active mine? If so, indicate name a		N 10		
16) Describe propo	sed well work: Drill, perforate, fracti	ure a new horizontal shallo	w well and complete	Marcellus Shale	
	the fresh water string which makes it difficult to determ	nine when freshwater is enc	ountered, therefore we	e have built in a buff	fer for the casing
	to ensure that all fresh water zones are covered.				
	ring/stimulating methods in detail ckwater into the Marcellus Shale formation in order to		n. The fluid will be co	mprised of approxin	nately 99 percent
water and sand, with less	than 1 percent special-purpose additives as shown in	the attached "List of Antici	pated Additives Used	for Fracturing or Sti	mulating Well."
-					
18) Total area to be	e disturbed, including roads, stock	oile area, pits, etc,	(acres):	11.1 acres	80.08
19) Area to be distr	urbed for well pad only, less access	s road (acres):	6.6 acres		STONE OF THE PARTY

WW - 6B (3/13)

20)

CASING AND TUBING PROGRAM

TYPE	Size	New or Used	Grade	Weight per ft.	FOOTAGE: For Drilling	INTERVALS: Left in Well	CEMENT: Fill -up (Cu. Ft.)
Conductor	20"	New	H-40	94#	40'	40'	CTS, 38 Cu. Ft.
Fresh Water	13-3/8°	New	J-55/H-40	54.5#/ 48#	310'	310'	CTS, 431 Cu. Ft
Coal	9-5/8"	New	J-55	36#	2575'	2575'	CTS, 1048 Cu. Ft.
Intermediate							
Production	5-1/2"	New	P-110	20#	14400'	14400'	3516 Cu. Ft.
Tubing	2-3/8"	New	N-80	4.7#		6500'	
Liners							

ТҮРЕ	<u>Size</u>	Wellbore Diameter	Wall Thickness	Burst Pressure	Cement Type	Cement Yield
Conductor	20"	24"	0.438"	1530	Class A	1.18
Fresh Water	13-3/8"	17-1/2"	0.38"/0.33"	2730/1730	Class A	1.18
Coal	9-5/8"	12-1/4"	0.352"	3520	Class A	1.18
Intermediate						
Production	5-1/2"	8-3/4" & 8-1/2"	0.361"	12630	Lead-H/POZ & Tail - H	H/POZ-1.44 & H-1.8
Tubing	2-3/8"	4.778"	0.19"	11200		
Liners						

PACKERS

Kind:	N/A		
Sizes:	N/A		
Depths Set:	N/A		

Dul 3

Page 2 of 3ed Received & Gas •

3003

21) Describe centralizer placement for each casing string.

Surface Casing: one centralizer 10' above the float shoe, one on the insert float collar and one every 4th joint spaced up the hole to surface.

Intermediate Casing: one centralizer above float joint, one centralizer 5' above float collar and one every 4th collar to surface.

Production Casing: one centralizer at shoe joint and one every 3 joints to top of cement in intermediate casing.

22) Describe all cement additives associated with each cement type.

Conductor: no additives, Class A cement.

Surface: Class A cement with 2% calcium and 1/4 lb flake, 5 gallons of clay treat

Intermediate: Class A cement with 1/4 lb of flake, 5 gallons of clay treat

Production: Lead cement- 50/50 Class H/Poz + 1.5% salt + 1% C-45 + 0.5% C-16a + 0.2% C-12 + 0.45% C-20 + 0.05% C-51

Production: Tail cement- Class H + 45 PPS Calcium Carbonate + 1.0% FL-160 + 0.2% ACGB-47 + 0.05% ACSA-51 + 0.2% ACR-20

23) Proposed borehole conditioning procedures.

Surface: blowhole clean with air, trip to conductor shoe, trip to bottom, blowhole clean with air, trip out, run casing, circulate pipe capacity + 40 bbls fresh water followed by 25 bbls bentonite mud, 10 bbls fresh water spacer.

Intermediate: blowhole clean with air, trip to surface casing shoe, trip to bottom, blowhole clean with air, trip out, run casing, circulate 40 bbls brine water followed by 10 bbls fresh water and 25 bbls bentonite mud, pump 10 bbls fresh water.

Production: circulate with 14 lb/gal NaCl mud, trip to middle of lateral, circulate, pump high viscosity sweep, trip to base of curve, pump high viscosity sweep, trip to top of curve, trip to bottom, circulate, pump high viscosity sweep, trip out, run casing, circulate 10 bbls fresh water, pump 48 bbls barite pill, pump 10 bbls fresh water followed by 48 bbls mud flush and 10 bbls water.

Page 3 of 3

^{*}Note: Attach additional sheets as needed.

	Page of
API Number 47 - 085	- 10041
Operator's Well	No. Blanche Unit 3H

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION OFFICE OF OIL AND GAS

FLUIDS/ CUTTINGS DISPOSAL & RECLAMATION PLAN

Watershed (HUC 10) North	Fork Hughes River	Quadrangle Pennsboro 7.5'
Elevation 971'	County_Ritchie	District_Clay
Will a pit be used for drill c If so, please descri Will a synthetic lin	tittings? Yes NoX be anticipated pit waste: Drilling and Florer be used in the pit? YesX No	he proposed well work? Yes _X No *An associated frac pit will be used for flowback fluids) by wback Fluids If so, what ml.? 60 mil
2 4 4 4 1 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Method For Treated Pit Wastes:	
	and Application Inderground Injection (UIC Permit Nur	nber)
F	euse (at API Number Future permitted well lo	cations when applicable. API# will be provided on Form WR-34
	off Site Disposal (Meadowfill Landfill Perrotther (Explain	nit #SWF-1032-98)
Will closed loop system be	used? Yes	
		, etc. Surface - Air/Freshwater, Intermediate - Dust/Stiff Foam, Production - Water Based Mud
	ype? Synthetic, petroleum, etc. N/A	
	ing medium? Please See Attachment	
	The second secon	te, etc. Stored in tanks, removed offsite and taken to landfill.
	an to solidify what medium will be used	
-Landfill or offsite	name/permit number? Meadowfill Landfill (I	*emil #5WF-1032-90)
on August 1, 2005, by the Corovisions of the permit are law or regulation can lead to I certify under perapplication form and all a obtaining the information, penalties for submitting fals Company Official Signature Company Official (Typed)	office of Oil and Gas of the West Virginial enforceable by law. Violations of any of enforcement action. Inalty of law that I have personally exact tachments thereto and that, based on I believe that the information is true, the information, including the possibility of the pos	tions of the GENERAL WATER POLLUTION PERMIT issue a Department of Environmental Protection. I understand that term or condition of the general permit and/or other applical mined and am familiar with the information submitted on tomy inquiry of those individuals immediately responsible accurate, and complete. I am aware that there are significally fine or imprisonment.
Company Official Title Er	vironmental & Regulatory Manager	
Subscribed and sworn before	e me this 8 day of Ac	LISA BOTTINELLI Notary Public State of Colorado

	Operator's W	_{ell No.} Blanche Unit 3
Antero Resources Appalachian Corpo		on 140
Mulch 2-3	ns/acre (500 lbs minimum) Hay or straw or Wood Fiber (will	
Existing Access Road(2.6) + Existing Drill Pad (6.6) + Existing Fra-	<u>c Pit (0.7) + Existing E&S (0.3) + Existing</u> ed Mixtures	Topsoil Stockpile (0.9) = 11.1 A
Seed Type Ibs/acre Annual Rye Grass 40	Seed Type Fox Tail/Grassy Perennial Rye	lbs/acre 40
*or type of grass seed requested by surface owner	Crown Vetch	20
	*or type of grass seed reques	ted by surface owner
Photocopied section of involved 7.5' topographic sheet. Plan Approved by: Dawl w Care		
Comments:Maintain all ENS Co	sutrol a Roadway	Repost

Received Office of Oil & Gas

west virginia department of environmental protection

Water Management Plan: Primary Water Sources

WMP-01190

API/ID Number:

047-085-10041

Operator:

Antero Resources

Blanche Unit 3H

Important:

For each proposed primary water source (including source intakes for purchased water sources) identified in your water management plan, and summarized herein, DEP has made an evaluation concerning water availability over the specified date range. DEP's assessment is based on the following considerations:

- •Statistical analysis of historical USGS stream gauge data (transferred to un-gauged locations as necessary);
- Identification of sensitive aquatic life (endangered species, mussels, etc.);
- Quantification of known existing demands on the water supply (Large Quantity Users);
- · Minimum flows required by the Army Corps of Engineers; and
- · Designated stream uses.

Based on these factors, DEP has provided, for each intake location (and origination point for purchased water), a reference gauge location and discharge flow reading which must be surpassed prior to withdrawals. Additionally, DEP has established a minimum passby flow at the withdrawal location which must also be surpassed prior to withdrawals. These thresholds are considered terms of the permit and are enforceable as such.

DEP is aware that some intake points will be used for mutiple wells and well sites. In these cases, the thresholds set by the Water Management Plan are to be interepreted as total withdrawal limits for each location over the specified date range regardless of how many wells are supported by that intake.

For all purchased water intakes, determinations of water availability are made at the original source intake location. It is the responsibility of the Oil and Gas Operator, not the seller, to cease withdrawal of water from the seller when flows are less than the minimum gauge reading at the stream gauge referenced by the Water Management Plan in order to protect stream uses.

Note that the determinations made herein are based on the best available data, but it is impossible to predict water availability in the future. While the DEP has carefully established these minimum withdrawal thresholds, it remains the operator's responsibility to protect aquatic life at all times. Approval to withdrawal is contingent upon permission from the land owner. It is the responsibility of the operator to secure and maintain permission prior to any withdrawals.

The operator is reminded that 24-48 hours prior to withdrawing (or purchasing) water, DEP must be notified by email at DEP.water.use@wv.gov.

APPROVED MAY 2 8 2013

Source Summary

WMP-01190

API Number:

047-085-10041

Operator:

Antero Resources

Blanche Unit 3H

Stream/River

Source

Ohio River @ Ben's Run Withdrawal Site

Owner:

Ben's Run Land Company

Limited Partnership

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: Intake Longitude:

12/24/2013

12/24/2014

8,500,000

39.46593

-81.110781

✓ Regulated Stream?

Ohio River Min. Flow

Ref. Gauge ID:

999999

Ohio River Station: Willow Island Lock & Dam

Max. Pump rate (gpm):

3,360

Min. Gauge Reading (cfs):

6,468.00

Min. Passby (cfs)

DEP Comments:

Refer to the specified station on the National Weather Service's Ohio River forecast

website: http://www.erh.noaa.gov/ohrfc//flows.shtml

Source

West Fork River @ JCP Withdrawal

Owner:

James & Brenda Raines

Start Date 12/24/2013

End Date 12/24/2014 Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: 39.320913

Intake Longitude: -80.337572

8.500,000

3061000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):

2,000

Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID:

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

146.25

DEP Comments:

Source

West Fork River @ McDonald Withdrawal

Owner:

David Shrieves

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: 39.16761

Intake Longitude: -80.45069

12/24/2013

12/24/2014

8,500,000

3061000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):

3,000

Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID:

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

106.30

Source West Fork River @ GAL Withdrawal **David Shrieves** Owner: Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 12/24/2013 12/24/2014 8,500,000 39.16422 -80.45173 Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID: 3061000 WEST FORK RIVER AT ENTERPRISE, WV Max. Pump rate (gpm): 2.000 Min. Gauge Reading (cfs): 175.00 106.30 Min. Passby (cfs) **DEP Comments:** Source Middle Island Creek @ Dawson Withdrawal Owner: Gary D. and Rella A. Dawson Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 12/24/2013 8,500,000 12/24/2014 39.379292 -80.867803 Regulated Stream? Ref. Gauge ID: MIDDLE ISLAND CREEK AT LITTLE, WV 3114500 Max. Pump rate (gpm): 3,000 Min. Gauge Reading (cfs): 76.03 Min. Passby (cfs) 28.83 **DEP Comments:** McElroy Creek @ Forest Withdrawal Forest C. & Brenda L. Source Owner: Moore Start Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: **End Date** 12/24/2013 12/24/2014 8,500,000 39.39675 -80.738197 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV

Min. Gauge Reading (cfs):

74.77

Min. Passby (cfs)

13.10

Max. Pump rate (gpm):

1,000

0	Source	McElroy Creek	@ Sweene	ey Withdrawal			Owner:	Bill Sweeney
	Start Date 12/24/2013	End Date 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude: 39.398123	Intake Longitude -80.656808
	☐ Regulated	Stream?		Ref. Gauge I	D: 31145 0	00	MIDDLE ISLAND CREEK AT	Γ LITTLE, WV
	Max. Pump ı	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min. Passby (c	fs) 6.66
		DEP Commer	nts:					
•	Source	Meathouse For	rk @ Gagn	on Withdrawal			Owner: Geo	orge L. Gagnon and Susan C. Gagnon
	Start Date 12/24/2013	End Date 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude: 39.26054	Intake Longitude: -80.720998
	☐ Regulated	Stream?		Ref. Gauge I	D: 31145 0	00	MIDDLE ISLAND CREEK AT	Γ LITTLE, WV
	Max. Pump r	ate (gpm):	1,000	Min. Gauge Read	ling (cfs):	71.96	Min. Passby (c	rfs) 11.74
		DEP Commer	nts:					:
0	Source	Meathouse For	rk @ White	ehair Withdrawal			Owner:	Elton Whitehair
	Start Date 12/24/2013	End Date 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude: 39.211317	Intake Longitude: -80.679592
	☐ Regulated	Stream?		Ref. Gauge I	D: 311450	00	MIDDLE ISLAND CREEK AT	r LITTLE, WV
	Max. Pump r	rate (gpm):	1,000	Min. Gauge Reac	ling (cfs):	69.73	Min. Passby (c	fs) 7.28

Source	Tom's Fork @ I	Erwin With	drawal			Owner: John F.	Erwin and Sandra E. Erwin
Start Date 12/24/201 3	End Date 3 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude 39.17430 6	e: Intake Longitude: -80.702992
Regulated			Ref. Gauge I	D: 311450	0	MIDDLE ISLAND CREEK	
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min. Passby ((cfs) 0.59
	DEP Commer	nts:					
Source	Arnold Creek @	Davis Wit	thdrawal			Owner:	Jonathon Davis
Start Date 12/24/2013	End Date 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude 39.302006	e: Intake Longitude: -80.824561
☐ Regulated	l Stream?		Ref. Gauge I	D: 311450	0	MIDDLE ISLAND CREEK	AT LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min. Passby ((cfs) 3.08
	DEP Commer	nts:					
		:					
Source	Buckeye Creek	@ Powell	Withdrawal			Owner:	Dennis Powell
Start Date 12/24/2013	End Date 12/24/2014		Total Volume (gal) 8,500,000	Max. daily p	urchase (gal)	Intake Latitude 39.277142	e: Intake Longitude: -80.690386
☐ Regulated	Stream?		Ref. Gauge I	D: 311450	0	MIDDLE ISLAND CREEK A	AT LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min. Passby ((cfs) 4.59

Source South Fork of Hughes River @ Knight Withdrawal Owner: Tracy C. Knight & Stephanie C. Knight Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 12/24/2013 12/24/2014 8,500,000 39.198369 -80.870969 Regulated Stream? Ref. Gauge ID: 3155220 **JOUTH FORK HUGHES RIVER BELOW MACFARLAN, W**\ Max. Pump rate (gpm): 3,000 Min. Gauge Reading (cfs): 39.80 Min. Passby (cfs) 1.95 **DEP Comments:** Source North Fork of Hughes River @ Davis Withdrawal Owner: Lewis P. Davis and Norma J. Davis Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 12/24/2013 12/24/2014 8,500,000 39.322363 -80.936771 ☐ Regulated Stream? Ref. Gauge ID: 3155220 **JOUTH FORK HUGHES RIVER BELOW MACFARLAN, W**\ Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 35.23 Min. Passby (cfs) 2.19

Source Summary

WMP-01190 API Number: 047-085-10041 Operator: Antero Resources Blanche Unit 3H

Purchased Water

 Source Middle Island Creek @ Solo Construction Owner:

Solo Construction, LLC

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude:

Intake Longitude:

12/24/2013

12/24/2014

8,500,000

1,000,000

39.399094

-81.185548

✓ Regulated Stream?

Ohio River Min. Flow Ref. Gauge ID:

9999999

Ohio River Station: Willow Island Lock & Dam

Max. Pump rate (gpm):

Min. Gauge Reading (cfs):

6,468.00

Min. Passby (cfs)

DEP Comments:

Elevation analysis indicates that this location has the same elevation as Middle Island Creek's pour point into the Ohio River. As such, it is deemed that water flow at this

location is heavily influenced by the Ohio River.

Source

Sun Valley Public Service District

Owner:

Sun Valley PSD

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: Intake Longitude:

12/24/2013

12/24/2014

8,500,000

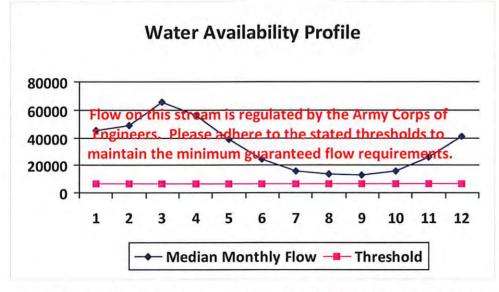
200,000

Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID:

3061000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):


Min. Gauge Reading (cfs):

171.48

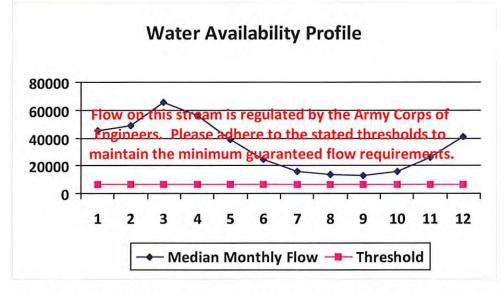
Min. Passby (cfs)

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	45,700.00	4,	-
2	49,200.00	-	(9)
3	65,700.00	1-0	
4	56,100.00		
5	38,700.00	-	12
6	24,300.00		
7	16,000.00	11.5	-
8	13,400.00	+	
9	12,800.00	-	
10	15,500.00	-	9
11	26,300.00	-	
12	41,300.00		~

Min. Gauge Reading (cfs): Passby at Location (cfs):	
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.00
Pump rate (cfs):	
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	

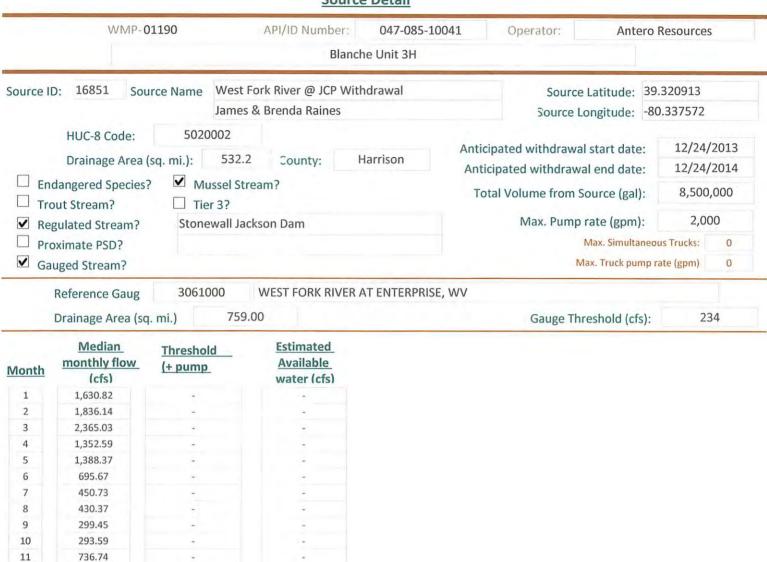
			Source Deta	<u>II</u>	
	WMP-C)1190	API/ID Number: 047-		ro Resources
			Bianche Offic	311	
Source II	D: 16865 Sou	irce Name Sun V	alley Public Service District	Source Latitude:	-
		Sun V	alley PSD	Source Longitude:	4
	HUC-8 Code:	5020002			1-12-12-12-12
	Drainage Area	(sq. mi.): 391.8	35 County: Harrison	Anticipated withdrawal start date:	
				Anticipated withdrawal end date:	: 12/24/2014
	dangered Species? out Stream?		ream?	Total Volume from Source (gal):	8,500,000
-		☐ Tier 3? Stonewall Ja	aksan Dam	Max. Pump rate (gpm):	
	gulated Stream?	Stonewan Ja	CKSOII Daili	Max. Simultar	
	oximate PSD?				
▼ Ga	uged Stream?			Max. Truck pum	ip rate (gpm)
	Reference Gaug	3061000	WEST FORK RIVER AT ENTE	ERPRISE, WV	
	Drainage Area (so	ı. mi.) 759	.00	Gauge Threshold (cfs): 234
Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)		
2	1,200.75 1,351.92				
3	1,741.33				
4	995.89				
5	1,022.23	4	*		
6	512.21	12.	.2		
7	331.86				
8	316.87	-			
9	220.48 216.17	-			
11	542.45				
12	926.12		-		
	W	/ater Availa	bility Profile	Water Availability Asse	ssment of Location
				Base Threshold (cfs):	-
2000	Т			Upstream Demand (cfs)):
				Downstream Demand (cfs):
1500		1	gulated by the Army Co	rps of	
1000			e to the stated threshol	<u></u>	2 (20)
500	maintain t	he minimum gu	uaranteed flow requirer	ments. Headwater Safety (cfs):	0.00
				Ungauged Stream Safet	ty (cfs): 0.00
0	1 2 3	3 4 5	6 7 8 9 10	11 12 Min. Gauge Reading (c	ıfs):

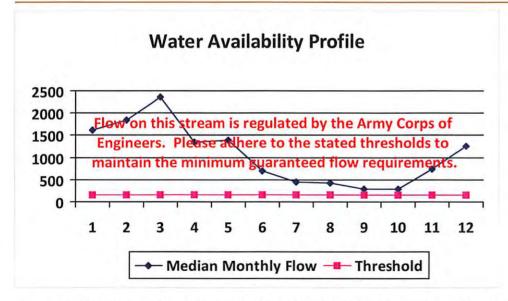
◆ Median Monthly Flow ■ Threshold


06/28/2013

Passby at Location (cfs):

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

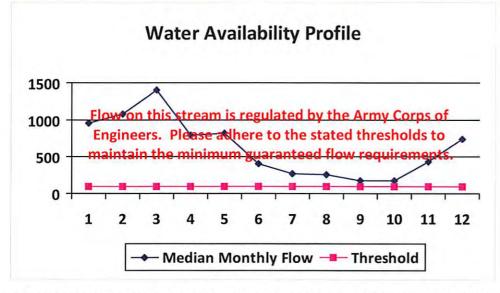



Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)
1	45,700.00	*	
2	49,200.00		
3	65,700.00		÷
4	56,100.00	-	
5	38,700.00	+	
6	24,300.00	-	
7	16,000.00	2	1.5
8	13,400.00	2.1	-
9	12,800.00		
10	15,500.00	4.	9.0
11	26,300.00	-	
12	41,300.00	-	

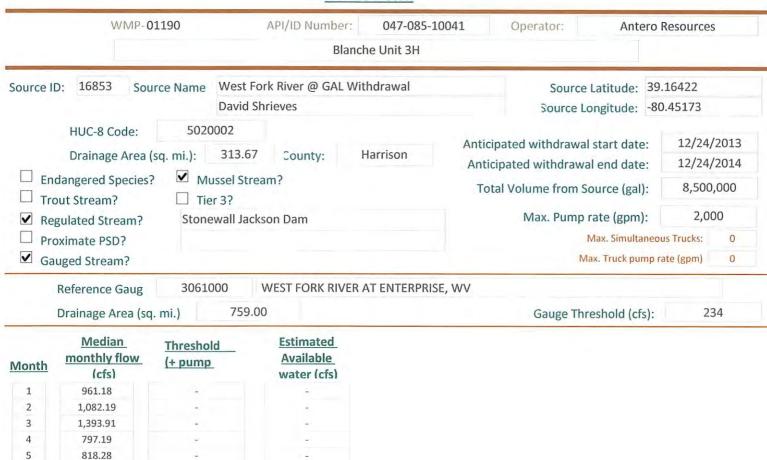
Min. Gauge Reading (cfs): Passby at Location (cfs):	
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.00
Pump rate (cfs):	7.49
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	

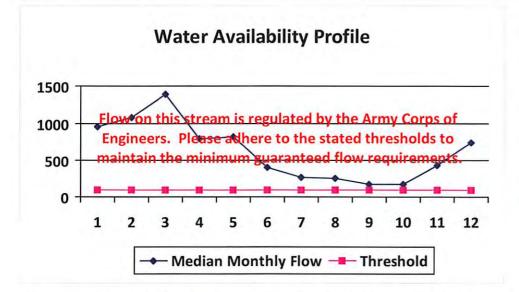
[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

Min. Gauge Reading (cfs):	
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.00
Pump rate (cfs):	4.46
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	24.29
Base Threshold (cfs):	-


"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

1,257.84


12



Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	964.98	-	
2	1,086.47	-	-
3	1,399.42	4.	-
4	800.34		
5	821.52	4.	
6	411.64	-	
7	266.70	-	-
8	254.66	75	
9	177.19	9.	
10	173.72		12
11	435.94	-	-
12	744.28		

Base Threshold (cfs):	
Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	6.68
Headwater Safety (cfs):	24.27
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	

Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	4.46
Headwater Safety (cfs):	24.18
Ungauged Stream Safety (cfs):	0.00

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

6

7

8

9

10

11

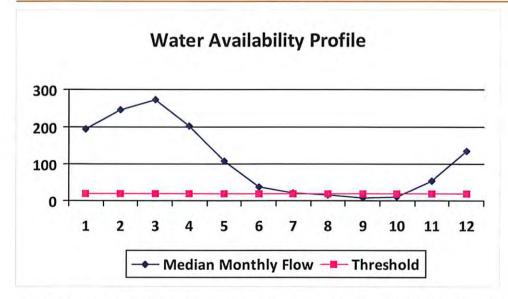
12

410.02

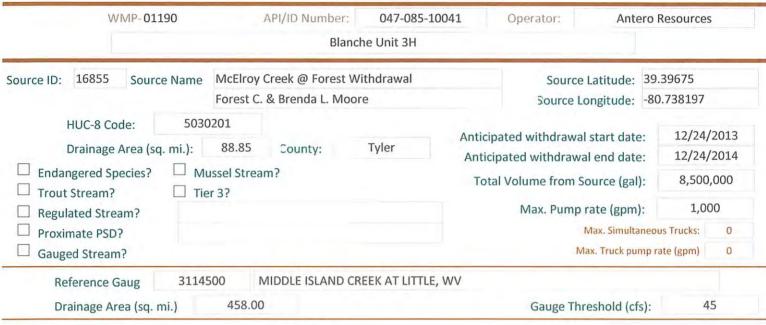
265.65

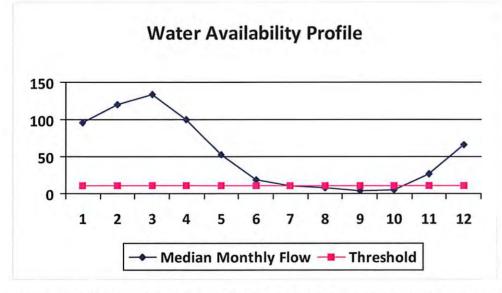
253.65

176.49

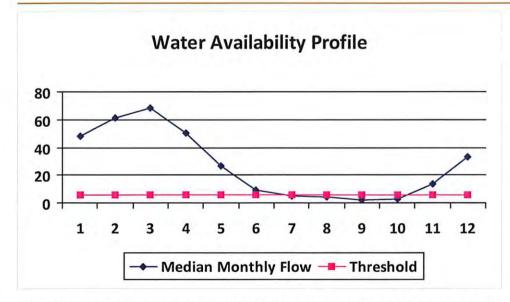

173.04

434.22


741.35

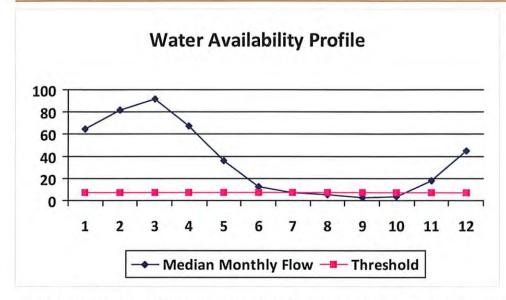

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	194.47	42.06	152.68
2	244.62	42.06	202.83
3	273.72	42.06	231.93
4	203.26	42.06	161.47
5	107.22	42.06	65.43
6	37.44	42.06	-4.35
7	21.19	42.06	-20.60
8	17.45	42.06	-24.34
9	8.94	42.06	-32.85
10	11.23	42.06	-30.56
11	54.82	42.06	13.04
12	133.96	42.06	92.17

76.03
0.00
4.45
6.68
6.55
13.10
17.82


Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	95.28	19.78	75.68
2	119.86	19.78	100.25
3	134.11	19.78	114.51
4	99.59	19.78	79.99
5	52.54	19.78	32.93
6	18.35	19.78	-1.26
7	10.38	19.78	-9.22
8	8.55	19.78	-11.05
9	4.38	19.78	-15.23
10	5.50	19.78	-14.10
11	26.86	19.78	7.26
12	65.63	19.78	46.03

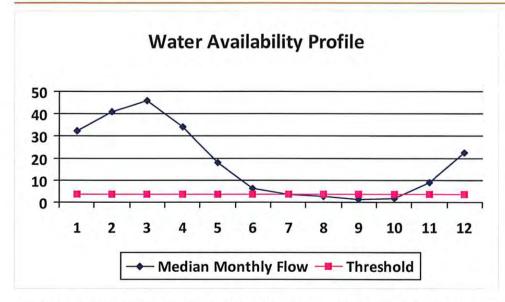
Min. Gauge Reading (cfs): Passby at Location (cfs):	74.19 13.09
Ungauged Stream Safety (cfs):	2.18
Headwater Safety (cfs):	2.18
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	4.46
Base Threshold (cfs):	8.73

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	48.43	8.88	39.93
2	60.92	8.88	52.42
3	68.17	8.88	59.67
4	50.62	8.88	42.12
5	26.70	8.88	18.21
6	9.32	8.88	0.83
7	5.28	8.88	-3.22
8	4.34	8.88	-4.15
9	2.23	8.88	-6.27
10	2.80	8.88	-5.70
11	13.65	8.88	5.16
12	33.36	8.88	24.86

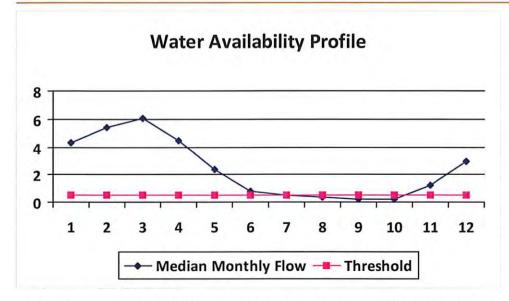


Min. Gauge Reading (cfs): Passby at Location (cfs):	69.73
Ungauged Stream Safety (cfs):	
Ungauged Stream Safety (efs):	1.11
Headwater Safety (cfs):	1.11
Pump rate (cfs):	0.00 0.00 2.23
Downstream Demand (cfs):	
Upstream Demand (cfs):	
Base Threshold (cfs):	4.44

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

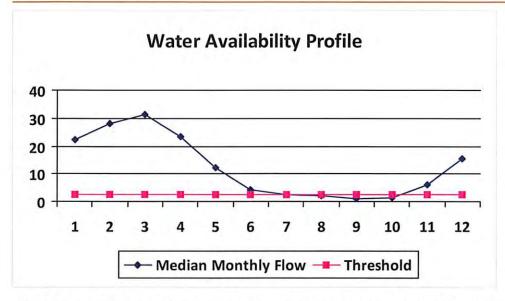

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	64.99	13.39	51.70
2	81.75	13.39	68.46
3	91.47	13.39	78.19
4	67.93	13.39	54.64
5	35.83	13.39	22.55
6	12.51	13.39	-0.77
7	7.08	13.39	-6.20
8	5.83	13.39	-7.45
9	2.99	13.39	-10.30
10	3.75	13.39	-9.53
11	18.32	13.39	5.04
12	44.76	13.39	31.48

Min. Gauge Reading (cfs): Passby at Location (cfs):	71.96 11.74
*** 6 - 2 - 1 - (4)	74.00
Ungauged Stream Safety (cfs):	1.49
Headwater Safety (cfs):	1.49
Pump rate (cfs):	2.23
Downstream Demand (cfs):	2.81
Upstream Demand (cfs):	2.23
Base Threshold (cfs):	5.95


Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	32.57	6.70	26.15
2	40.97	6.70	34.55
3	45.84	6.70	39.42
4	34.04	6.70	27.62
5	17.96	6.70	11.54
6	6.27	6.70	-0.15
7	3.55	6.70	-2.87
8	2.92	6.70	-3.50
9	1.50	6.70	-4.92
10	1.88	6.70	-4.54
11	9.18	6.70	2.76
12	22.43	6.70	16.01

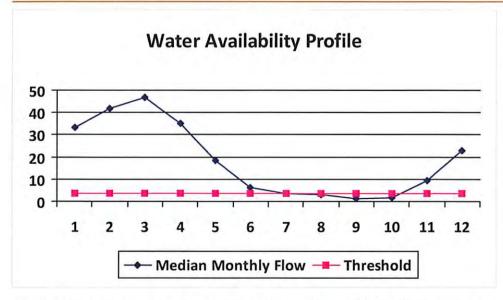
Min. Gauge Reading (cfs): Passby at Location (cfs):	69.73 7.29
Ungauged Stream Safety (cfs):	0.75
Headwater Safety (cfs):	0.75
Pump rate (cfs):	2.23
Downstream Demand (cfs):	2.81
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	2.98

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	4.30	2.82	1.88
2	5.41	2.82	2.98
3	6.05	2.82	3.63
4	4.49	2.82	2.07
5	2.37	2.82	-0.05
6	0.83	2.82	-1.60
7	0.47	2.82	-1.96
8	0.39	2.82	-2.04
9	0.20	2.82	-2.23
10	0.25	2.82	-2.18
11	1.21	2.82	-1.21
12	2.96	2.82	0.54

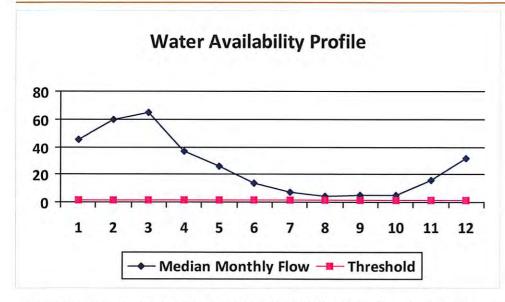


Passby at Location (cfs):	0.59
Min. Gauge Reading (cfs):	69.73
Ungauged Stream Safety (cfs):	0.10
Headwater Safety (cfs):	0.10
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	0.39

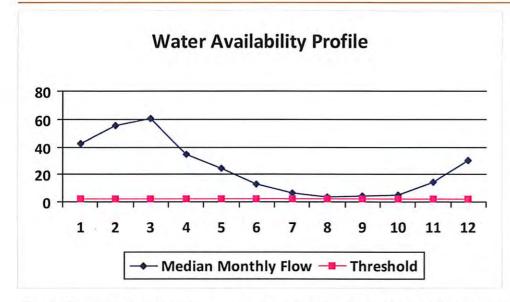
[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.


<u>Month</u>	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	22.34	5.30	17.29
2	28.10	5.30	23.05
3	31.44	5.30	26.39
4	23.35	5.30	18.30
5	12.32	5.30	7.26
6	4.30	5.30	-0.75
7	2.43	5.30	-2.62
8	2.00	5.30	-3.05
9	1.03	5.30	-4.03
10	1.29	5.30	-3.76
11	6.30	5.30	1.25
12	15.39	5.30	10.34

Min. Gauge Reading (cfs): Passby at Location (cfs):	69.73 3.07
Ungauged Stream Safety (cfs):	0.51
Headwater Safety (cfs):	0.51
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	2.05


Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)
1	33.41	6.82	26.95
2	42.02	6.82	35.56
3	47.02	6.82	40.56
4	34.92	6.82	28.46
5	18.42	6.82	11.96
6	6.43	6.82	-0.03
7	3.64	6.82	-2.82
8	3.00	6.82	-3.46
9	1.53	6.82	-4.92
10	1.93	6.82	-4.53
11	9.42	6.82	2.96
12	23.01	6.82	16.55

Passby at Location (cfs):	4.59
Min. Gauge Reading (cfs):	69.73
Ungauged Stream Safety (cfs):	0.77
Headwater Safety (cfs):	0.77
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	3.06


Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	45.67	14.26	31.44
2	59.55	14.26	45.31
3	65.21	14.26	50.97
4	36.87	14.26	22.63
5	25.86	14.26	11.63
6	13.90	14.26	-0.33
7	6.89	14.26	-7.34
8	3.98	14.26	-10.25
9	4.79	14.26	-9.45
10	5.20	14.26	-9.04
11	15.54	14.26	1.30
12	32.06	14.26	17.82

Min. Gauge Reading (cfs): Passby at Location (cfs):	39.80 1.95
Bain Cours Bonding (st.)	20.00
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.39
Pump rate (cfs):	6.68
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	5.62
Base Threshold (cfs):	1.56

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	42.64	4.42	38.36
2	55.59	4.42	51.32
3	60.88	4.42	56.60
4	34.42	4.42	30.14
5	24.15	4.42	19.87
6	12.98	4.42	8.70
7	6.44	4.42	2.16
8	3.72	4.42	-0.56
9	4.47	4.42	0.19
10	4.85	4.42	0.57
11	14.50	4.42	10.23
12	29.93	4.42	25.65

Min. Gauge Reading (cfs): Passby at Location (cfs):	35.23		
Ungauged Stream Safety (cfs):	0.36		
Headwater Safety (cfs):	0.36		
Pump rate (cfs):	2.23		
Downstream Demand (cfs):	0.00		
Upstream Demand (cfs):	0.00		
Base Threshold (cfs):	1.46		

west virginia department of environmental protection

Water Management Plan: Secondary Water Sources

WMP-01190

API/ID Number

047-085-10041

Operator:

Antero Resources

Blanche Unit 3H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Lake/Reservior

Source ID	16866	Source Name	City of Salem	City of Salem Reservior (Lower Dog Run)			12/24/2013
			Public Water	Provider		Source end date	12/24/2014
		Source Lat:	39.28834	Source Long:	-80.54966	County	Harrison
		Max. Daily Pu	rchase (gal)	1,000,000	Total Volu	ime from Source (gal):	8,500,000
	DEP C	omments:					

WMP-01190	API/ID Number	047-085-10041	Operator:	Antero Resources
	Bland	che Unit 3H		

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 16867	16867	Source Name	Pennsboro Lak	е		Source start date:	12/24/2013
						Source end date:	12/24/2014
		Source Lat:	39.281689	Source Long:	-80.925526	County	Ritchie
		Max. Daily Pu	rchase (gal)		Total Volum	me from Source (gal):	8,500,000
	DEP Co	mments:					

Source ID:	16868	Source Name	Powers Lake (V	Powers Lake (Wilderness Water Park Dam)			Source start date:	
			Private Owner			Source end	date:	12/24/2014
		Source Lat:	39.255752	Source Long:	-80.463262	County	Н	arrison
		Max. Daily Pu	rchase (gal)		Total Volum	me from Source (ga	al):	8,500,000
	DEP Co	omments:						

WMP-01190 API/ID Number 047-085-10041 Operator: Antero Resources
Blanche Unit 3H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

	Source ID:	16869	Source Name	Powers Lake Tv	wo		Source start da	te:	12/24/2013
							Source end da	te:	12/24/2014
			Source Lat:	39.247604	Source Long:	-80.466642	County	Ha	arrison
			Max. Daily Pu	rchase (gal)		Total Volu	me from Source (gal)		8,500,000
		DEP Co	mments:						

WMP-01190 API/ID Number 047-085-10041 Operator: Antero Resources

Blanche Unit 3H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Other

Source ID:	16870	Source Name	Poth Lake (Lar	idowner Pond)		Source start da	te: 12/24/201
			Private Owne	r		Source end da	te: 12/24/201
		Source Lat:	39.221306	Source Long:	-80.463028	County	Harrison
		Max. Daily Pu	rchase (gal)		Total Volu	me from Source (gal)	8,500,000
	DEP Co	mments:					
1200 C TO	1302.71	San Francis					
Source ID:	16871	Source Name	Williamson Po	nd (Landowner Po	ond)	Source start da	re: 12/24/201
Source ID:	16871	Source Name	Williamson Po	nd (Landowner Pc	ond)	Source start da Source end da	
Source ID:	16871	Source Name Source Lat:	Williamson Po 39.19924	nd (Landowner Po Source Long:	ond) -80.886161		
Source ID:	16871		39.19924		-80.886161	Source end da	Ritchie
Source ID:		Source Lat:	39.19924		-80.886161	Source end da	ne: 12/24/202 Ritchie

WMP-01190	API/ID Number	047-085-10041	Operator:	Antero Resources
	Blan	che Unit 3H		

Important:

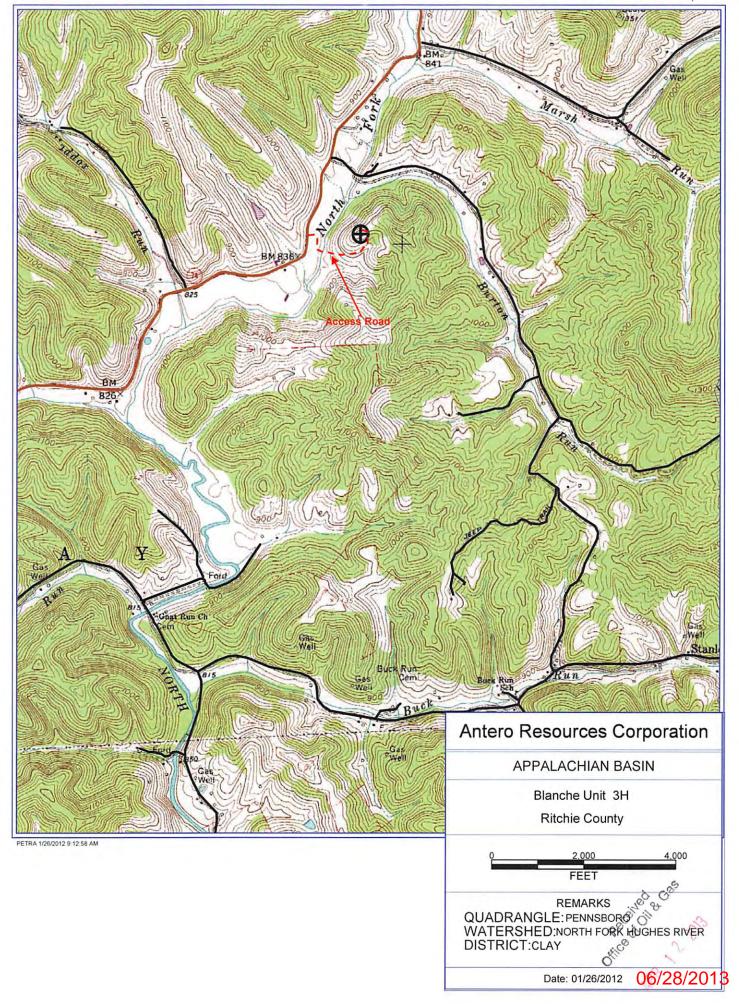
For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

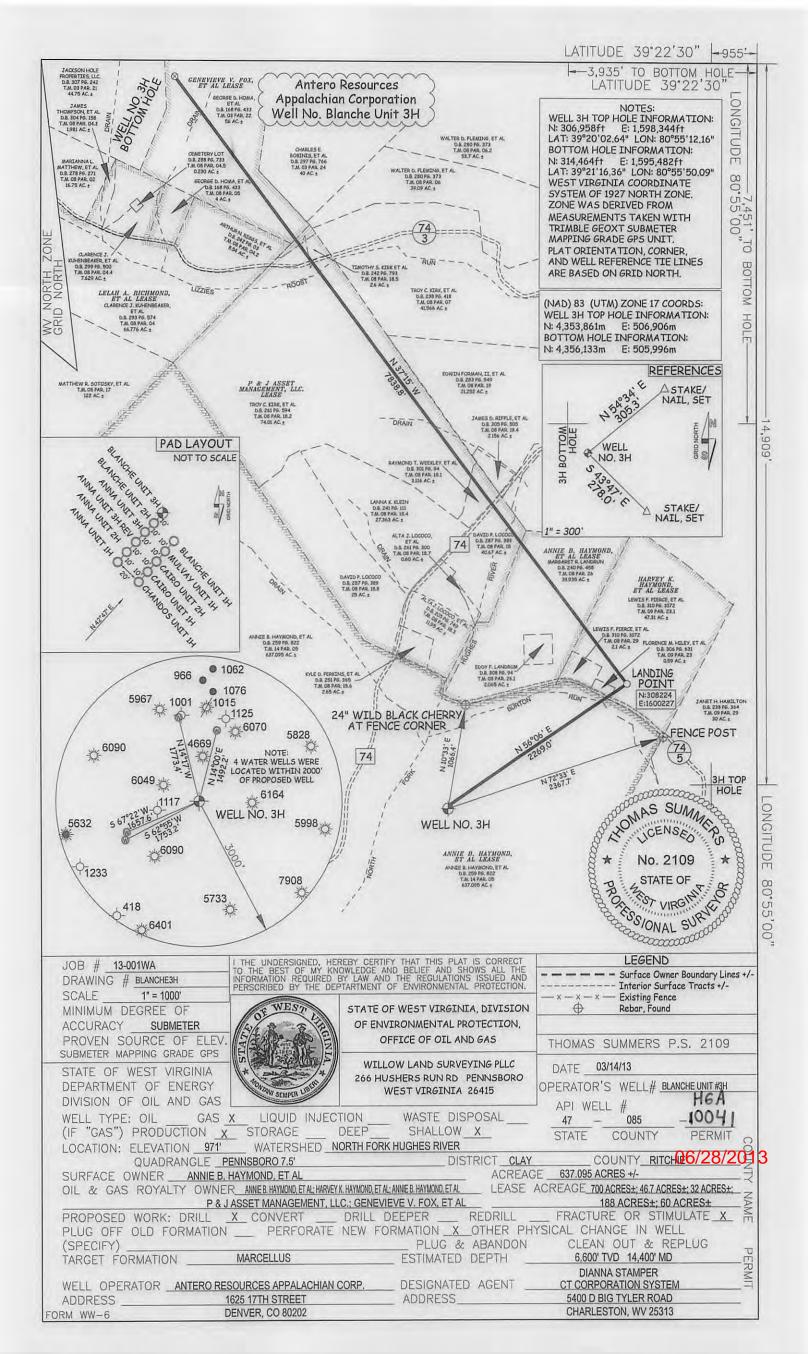
- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID:	16872	Source Name	Eddy Pond (La	ndowner Pond)		Source start date:	12/24/2013
						Source end date:	12/24/2014
		Source Lat:	39.19924	Source Long:	-80.886161	County	Ritchie
		Max. Daily Pu	rchase (gal)		Total Volu	me from Source (gal):	8,500,000
	DEP Co	mments:					

Source ID:	16873	Source Name	Hog Lick Qua	rry	Source start date:	12/24/2013	
			Industrial Fac	cility		Source end date:	12/24/2014
	Se	Source Lat:	39.419272	Source Long:	-80.217941	County	Marion
		Max. Daily Pu	rchase (gal)	1,000,000	Total Volum	me from Source (gal):	8,500,000
	DEP Co	mments:					

WMP-01190	API/ID Number	047-085-10041	Operator:	Antero Resources
	Bland	che Unit 3H		


Important:


For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 16874 Source Name Glade Fork Mine 12/24/2013 Source start date: Industrial Facility 12/24/2014 Source end date: 38.965767 -80.299313 Source Lat: Source Long: County Upshur Max. Daily Purchase (gal) 1,000,000 Total Volume from Source (gal): 8,500,000 **DEP Comments:**

Source ID: 16875 Source Name Blanche Unit 2H Source start date: 12/24/2013 Source end date: 12/24/2014 Source Lat: Source Long: County Max. Daily Purchase (gal) Total Volume from Source (gal): 8,500,000 DEP Comments:

