WR-35 Rev (8-10)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8/16/2011
API#:	47-051-01255

Farm name: Randy McDowell B 5	5H	Oper	Operator Well No.: 627051			
LOCATION: Elevation: 1356	GL	Quad	rangle: Wileyville	Э		
District: Meade-Mar	shall	Coun	ity: Marshall	·		
Latitude: 1,250	Feet South of 39	Deg. 45	Min. 00	Sec.		
Longitude 4,600	Feet West of 80	Deg. 40	Min. 00	Sec.		

Company: Chesapeake Appalachia, LLC

Address:	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.
P.O. Box 18496, Oklahoma City, OK 73154	20"	60'	60'	driven
Agent: Eric Gillespie	13 3/8"	1,232'	1,232'	1251 cf
Inspector: David K. Scranage	9 5/8"	2,726'	2,726'	1084 cf
Date Permit Issued: 5/20/2009	5 1/2"	10,617'	10,617'	2466 cf
Date Well Work Commenced: 1/24/2011				
Date Well Work Completed: 3/28/2011				
Verbal Plugging:				
Date Permission granted on:				
Rotary X Cable Rig				
Total Vertical Depth (ft): 7,135'				
Total Measured Depth (ft): 10,616'			1	
Fresh Water Depth (ft.): 360'				
Salt Water Depth (ft.): NONE				
Is coal being mined in area (N/Y)? NO				
Coal Depths (ft.): 275', 1065'				
Void(s) encountered (N/Y) Depth(s)				

PEN FLOW DATA (If more than Producing formation Marcelius			al data on separate sheet)
Gas: Initial open flow 6,552 N		Bbl/d	
	nitial and final tests	Hours	FEB 0 \$ 7007 -
Second producing formation	Pay zone dep	oth (ft)	
Gas: Initial open flow M Final open flow M	ACF/d Oil: Initial open flow ICF/d Final open flow nitial and final tests	Bbl/d Bbl/d	Entropy Control of the Control of th

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Marlan Welliams

2-3-202 Date

Were core samples taken? YesNo_X	Were cutting	ngs caught during drilling	? Yes_X No
Were $\frac{N}{Y/N}$ Electrical, $\frac{N}{Y/N}$ Mechanical, $\frac{N}{Y/N}$ or Geop	hysical logs recorde	d on this well?	
NOTE: IN THE AREA BELOW PUT THE FO FRACTURING OR STIMULATING, PHYSICAL CH DETAILED GEOLOGICAL RECORD OF THE TOP: ENCOUNTERED BY THE WELLBORE FROM SUR	IANGE, ETC. 2). T S AND BOTTOMS	THE WELL LOG WHI S OF ALL FORMATIO	CH IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Stimulating:			
(see attached)			

		· · · · · · · · · · · · · · · · · · ·	
Formations Encountered: To Surface:	op Depth		Bottom Depth
(see attached)			·
(see attached)			
		•	
		<u></u>	
			Maryan Brasiles Japan

LITHOLOGY	TOP DEPTH (FT)	BOTTOM DEPTH (FT)
SHALE AND SS	0	275
COAL	275	277
SHALE and SS	277	1065
COAL	1065	1067
SHALE and SS	1067	1140
Pittsburgh Coal	1140	1149
SHALE and SS	1149	1540
SHALE and SS	1540	1570
LMST	1570	1610
LMST and SS	1610	1620
LMST and SHALE	1620	1642
SS	1642	1690
SS and SHALE	1690	1700
COAL	1700	1710
COAL and SHALE	1710	1720
SHALE and SS	1720	1740
SHALE and 35	1740	1770
SS and SHALE	1770	1780
SS and STALL	1780	1790
SS and SHALE	1790	1810
SHALE and SS	1810	1851
Salt Sands	1851	1888
SHALE	1888	1910
SS	1910	1960
SS and COAL	1960	2000
SS and COAL	2000	2037
Maxton	2037	2057
SS and SHALE	2057	2226
SS and SHALE	2226	2235
Big Lime	2235	2301
LMST	2301	2260
	2260	2280
LMST and SS LMST and SHALE	2280	2289
	2289	2538
Big Injun	2538	2340
SS and LMST	2340	2450
SS	2450	2460
SHALE and SS	2460	2470
SS and SHALE	2470	2550
SS	2550	2556
SHALE and SS	2556	2567
Geneseo		2652
SHALE	2567	2710
SHALE and SS	2652	
SHALE	2710	6826

SHALE and LMST	6826	6834
SHALE	6834	6924
SHALE and LMST	6924	6926
LMST and SHALE	6926	6934
SHALE and LMST	6934	6950
SHALE	6950	6970
SHALE and LMST	6970	6980
LMST and SHALE	6980	6990
SHALE	6990	7100
SHALE and LMST	7100	7120
LMST and SHALE	7120	7182
Tully	7182	7204
SHALE and LMST	7204	7200
SHALE	7200	7230
LMST and SHALE	7230	7292
SHALE	7292	7496
Marcellus	7496	10615

PERFORATION RECORD ATTACHMENT

Well Name and Number: Randy McDowell B 5H (627051)

PERFO	RATION RE	CORD	STIMULATION RECORD							
T	Interval Pe	erforated				Fluid		Propping Agent		Average
Date	From	То	Date	Interval	Treated	Туре	Amount	Туре	Amount	Injection
3/19/2011	10,258	10,500	3/19/2011	10,258	10,500	Slk Wtr	9,307	Sand	454,660	86.0
3/20/2011	9,958	10,200	3/20/2011	9,958	10,200	Slk Wtr	9,835	Sand	452,507	86.0
3/20/2011	9,658	9,900	3/20/2011	9,658	9,900	Slk Wtr	9,640	Sand	455,082	89.0
3/21/2011	9,358	9,592	3/21/2011	9,358	9,592	Slk Wtr	9,705	Sand	449,358	85,0
3/22/2011	9,058	9,295	3/22/2011	9,058	9,295	Slk Wtr	9,368	Sand	420,966	85.0
3/23/2011	8,758	8,994	3/23/2011	8,758	8,994	Slk Wtr	10,097	Sand	448,953	86.0
3/24/2011	8,458	8,700	3/24/2011	8,458	8,700	Slk Wtr	9,502	Sand	457,511	86.0
3/25/2011	8,218	8,400	3/25/2011	8,218	8,400	Slk Wtr	8,032	Sand	356,917	86.0
3/25/2011	7,978	8,160	3/25/2011	7,978	8,160	Slk Wtr	8,105	Sand	361,744	84.0
3/26/2011	7,738	7,920	3/26/2011	7,738	7,920	Slk Wtr	8,022	Sand	234,379	86.0
3/27/2011	7,498	7,680	3/27/2011	7,498	7,680	Slk Wtr	8,077	Sand	364,500	86.0
	*									
					l		-			
1					T"					
			1							