

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor
Randy C. Huffman, Cabinet Secretary
www.dep.wv.gov

PERMIT MODIFICATION APPROVAL

January 09, 2014

XTO ENERGY, INC. 810 HOUSTON STREET FORT WORTH, TX 76102

Re: Permit Modification Approval for API Number 3305706 , Well #: ANDERSON UNIT A 2H Corrected mine depth

Oil and Gas Operator:

The Office of Oil and Gas has reviewed the attached permit modification for the above referenced permit. The attached modification has been approved and well work may begin. Please be reminded that the oil and gas inspector is to be notified twenty-four (24) hours before permitted well work is commenced.

Please call James Martin at 304-926-0499, extension 1654 if you have any questions.

Gene Smith

Regulatory/Compliance Manager

Office of Oil and Gas

WV DEP Office of Oil & Gas Attn: Permitting 601 57th Street Charleston, WV 25304

June 17, 2013

RE: Anderson Unit A 2H - Modification

To Whom It May Concern:

Enclosed is a revised WW-6B for our Anderson Unit A 2H well, API 47-033-05706. The WW-6B shows changes to the casing program and corrected information regarding the abandoned Williams coal mine depth. There was previously a misunderstanding regarding elevation vs. depth of the mine at this location.

Sincerely,

Tim Sands

Regulatory Compliance Technician

XTO Energy, Inc.

PO Box 1008

Jane Lew, WV 26378

Tim Sands@xtoenergy.com

304-884-6036

Received

AUG - 2 2010

Office of Oil and Gas
WV Dept. of Environmental Protection

WW - 6B (3/13)

0

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS WELL WORK PERMIT APPLICATION

1) Well Operator:	XTC	Energy,	Inc.	494487940	Harrison	Eagle	Shinnston
				Operator ID	County	District	Quadrangle
2) Operator's Well N	Number:	Andersor	Unit A 2H	V	Vell Pad Nam	e: Anderson L	Init A
3 Elevation, current	ground	1,087'	Ele	vation, proposed j	oost-construct	ion:	1,084'
4) Well Type: (a) G	as		Oil	Underground	l Storage		_
(Other						
(b) If	Gas:	Shallow		Deep			2)
		Horizontal				2	131/2013
5) Existing Pad? Yes	s or No:					7/	31/2013
6) Proposed Target l	Formatio	on(s), Depth	(s), Anticipate	ed Thicknesses and	d Associated	Pressure(s):	
Target Formation: Marc	cellus, Dep	th 7055', Anticipa	ated Thickness: 15	50', Associated pressure	: 4,650 psi		
7) Proposed Total V	ertical I	Depth: _7	7,190'				
8) Formation at Tota	al Vertic	al Depth:	Marcellus				
9) Proposed Total M	leasured	Depth:	14,500'				
10) Approximate Fro	esh Wat	er Strata Der	oths: 31	' & 131'		A	Receive
11) Method to Deter				fsetting Reports		***************************************	- CIVe
12) Approximate Sa			616'				106 - 2 20
13) Approximate Co	al Seam	Depths:	149', 245'			W Dept. Offic	0/3
14) Approximate De	epth to P	ossible Voic	(coal mine, l	carst, other):	Possible Wil	liams Coal Mine - 1	nvironment Gas
15) Does proposed vadjacent to an ac					or No		e of Oir Nyironmental Protection
16) Describe propos	ed well	work:	rill a new horizonta	Marcellus well, utilizing s	ynthetic mud and a	closed loop syste	m for both drilling and
completion. Install new	casing wi	th centralizers.					

17) Describe fractur							
				bore. 1500 gals 15% HCl acid. 2. S			
	1 1537/16 13	N N N N N N N N N N N N N N N N N N N		th 220,000 lbs 40/70, 270,000 lbs 100 ore. Depending on the water quality, a bloc	100 and 100 an	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
18) Total area to be	disturbe	d, including	roads, stockp	ile area, pits, etc, ((acres):	6.78 +/-	
19) Area to be distur	bed for	well pad onl	y, less access	road (acres):	5.26 +/-		
					-	-	Page 1 of 3

01/10/2014

WW - 6B (3/13)

20)

CASING AND TUBING PROGRAM

ТҮРЕ	Size	New or Used	Grade	Weight per ft.	FOOTAGE: For Drilling	INTERVALS: Left in Well	CEMENT: Fill -up (Cu. Ft.)
Conductor	24"	New	Class B	94#	40'	40'	40 cuft - C.T.S.
Fresh Water	13 3/8"	New	MS-50	48#	300'	300'	270 cuft - C.T.S.
Coal							
Intermediate	9 5/8"	New	J-55	36#	2625'	2625'	Lead 980'/Tail 210' - C.T.S.
Production	5 1/2"	New	CYP-110	17#	14500'	14500'	3110 cuft
Tubing							
Liners							

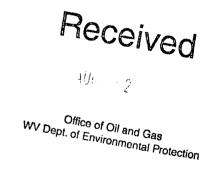
5DW 7/31/2013

ТҮРЕ	Size	Wellbore Diameter	Wall Thickness	Burst Pressure	Cement Type	Cement Yield
Conductor	24"	28"	0.375"	n/a	Concrete	1.19
Fresh Water	13 3/8"	17.5"	0.33"	2,160	Type 1	1.19
Coal						
Intermediate	9 5/8"	12.25"	0.352"	3,520	Type 1	Lead 1.26/Tail 1.19
Production	5 1/2"	8.75" 8.5"/7.875"	0.304"	10,640	Type 1	1.32
Tubing					R	povion
Liners					1 6 9	JOCIVCO

AUG - 2 2013

PACKERS

Kind:			Office of Oil and Gas
Sizes:		WV L	ept. of Environmental Protection
Depths Set:			


Page 2 of 3

01/10/2014

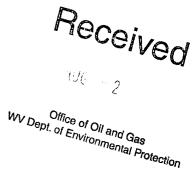
WW - 6B (3/13)

21) Describe centralizer placement for each casing string.
Conductor: none
Fresh Water: 1"-6" above float shoe, 1 at float collar, & 1 at every 4th joint to surface
Intermediate: 1"-6" above float shoe, 1 at float collar, & 1 at every 4th joint to surface
Production: 1 at every 4th joint from the kickoff point to 1000' above the kickoff point
22) Describe all cement additives associated with each cement type.
Conductor - Concrete - no additives
Fresh Water - Tail - Type 1 - 2% Calcium Chloride, Super Flake
Intermediate - Lead - Type 1 - 2% Calcium Chloride, Super Flake
Tail - Type 1 - 2% Calcium Chloride, Super Flake
Production - Tail 50/50 POZ - Type 1 - Sodium Chloride, Bentonite, Super Flake, Air-Out, R-1, AG-350
23) Proposed borehole conditioning procedures.
See attached sheet

*Note: Attach additional sheets as needed.

Page 3 of 3

01/10/2014


Anderson Unit A 2H - Void Encounter

We will set conductor at a minimum 40' from ground level to nipple up an annular diverter, with a 3" gate valve installed on the conductor pipe that would be used to divert flow.

We will set 13 3/8" casing around 300' if we do not encounter the mine.

If we do encounter the mine we will set 18"-50' deeper than the void or in good solid rock (whichever is first). A cement basket will be run on the backside of the 18" casing and cement will be pumped down the inside of the pipe up to the void. A top out job on the annulus will be done from surface to the top of the void (cement basket).

After waiting on cement we'll continue forward with our planned design which is to set a string of 13 3/8 surface casing at 300' TVD.

					Casing I	Design/Progra	m					Cementing Program	
Туре	Hole Size	Size	Length	Top/Bottom of String	Grade	Weight (ppf)	Wall Thickness	Burst Pressure Rating	Centralizer Placement	Туре	Yield (cu. ft/sk)	Additives (trade names are Superior Well Services)	Estimated Volume (c
Conductor	28"	24"	40'	0' / 40'	Class B	94	0.375	n/a	none	concrete	1.19	none	40
Coal	22"	18"	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Surface / Fresh Water	17.5"	13-3/8"	300	0' / 300'	MS-50	48	0.33"	2160	1-6" above float shoe 1-at float collar 1-every 4th jt to surface	Tail -Type 1	1.19	Calcium chloride, Super Flake	280
Intermediate	12.25"	9-5/8"	2625	0' / 2625'	J-55	36	0.352"	3520	1-6" above float shoe 1-at float collar	Lead-Type 1	1.26	Calcium Chloride, Super Flake	980
	12.20								1-every 4th jt to surface	Tail -Type 1	1.19	Calcium chloride, Super Flake	210
Production	8.75" 8.5"/7.875"	5-1/2"	14,500	0' / 14500'	CYP-110	17	0.304	10640	Every 4th joint from 1000' above KOP to KOP	Tail-50/50 POZ:Type 1	1.32	Sodium chloride, bentonite, Super Flake, Air-Out, R-1, AG- 350	3110
Tubing													
Liners												·	

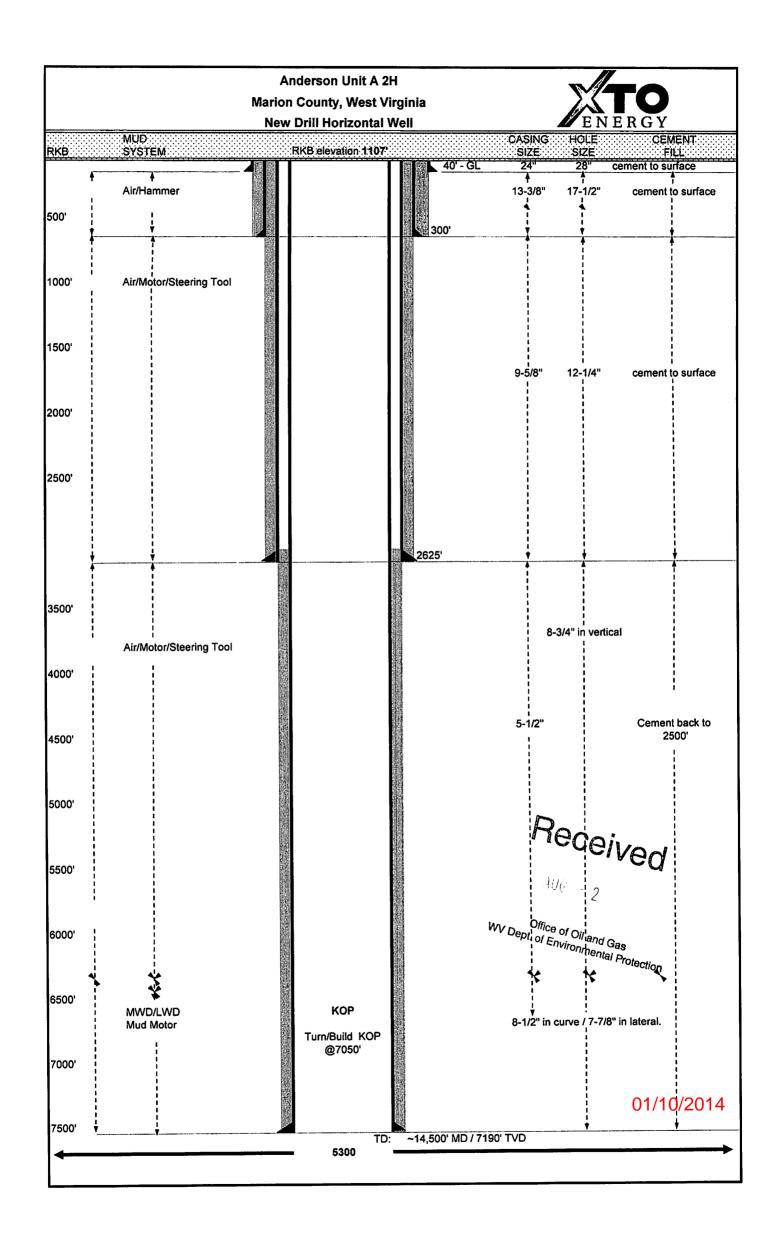
	Anderson Unit A 2H Proposed Directional Data									
	Drilling Condition Procedures									
Hole Section	Hole Size	Fluid	Drilling	At TD	Running Casing	Prior to Cementing				
Conductor	28	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping coment				
Coal	22"	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement				
Fresh Water	17.5	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping carment				
Intermediate	12.25	Air∕Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement				
Production	8.75 8.5°/7.875°	Air / Non- aqueous based mud	cuttings out of the hole, MW will be approximately 11.5ppg-14.0ppg for stability and overbalance. As required, the hole will be circulated at high pump	The hole will be circulated at maximum possible pump rate and the drill string will be rotated at the maximum rpm.	Hole will be circulated as necessary while running casing.	Hole will be circulated at least one bottoms up prior to pumping cement.				
Tubing										
Liners										

Anderson Unit A 2H Proposed Directional Data

	Measured Depth	Inclination Angle	Azimuth Direction	
Proposed Angle/Direction of Well		90	158	Lateral
Angle and Direction of Non-vertical wellbore until target		10	192	Curve/Throw
Approx. Depth at which well deviates from vertical		T		
	1000	5	225	Nudge

Other directional data

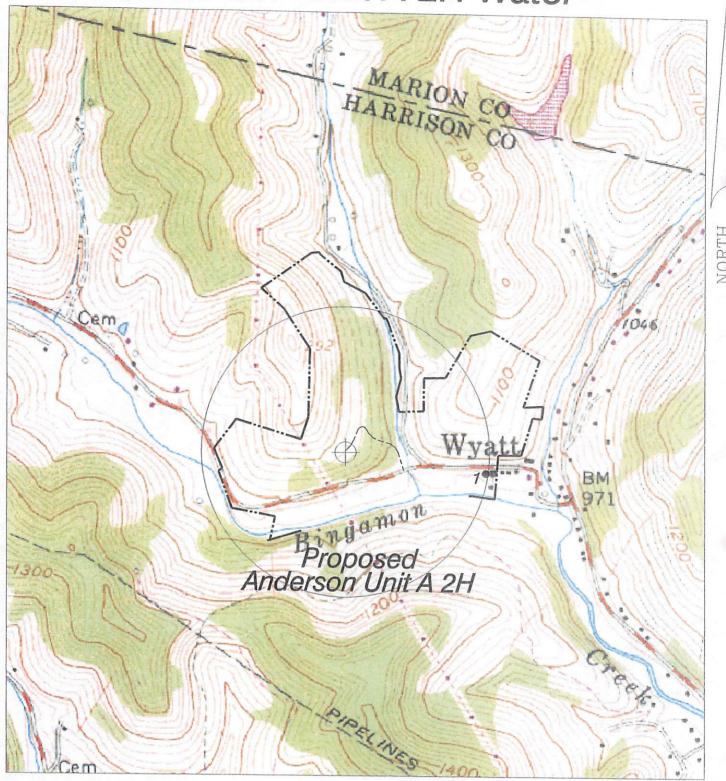
 KOP
 3000


 LP
 8000

 TD
 13500

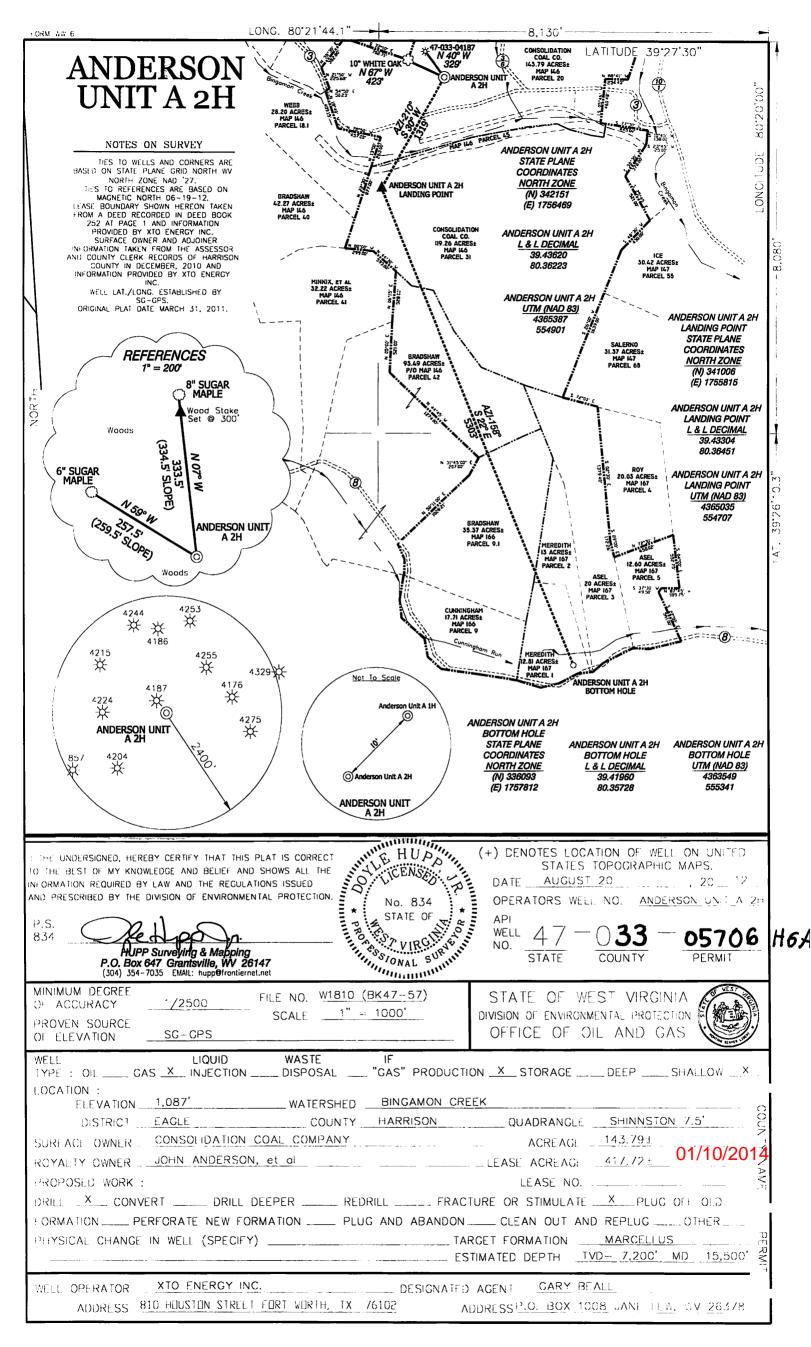
approx. TD 14500 (rounded up)

Received


Office of Oll and Gas WV Dept. of Environmental Protection

Form W-9

XTO ENERGY INC. Anderson Unit A 2H Water


Page 1 of 1

HUPP Surveying & Mapping

P.O. BOX 647 GRANTSVILLE, WV 26147 PH: (304)354-7035 E-MAIL: hupp@frontiernet.net 1" = 1000' Shinnston Quad XTO Energy Inc. 810 HOUSTON STREET Fort Worth, TX 76102

> 01/10/2014 0CT 19 2012

