WR-35 Rev (8-10)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	8/10/2011
API#:	47-33-05489H

Farm name; JOHNSTOWN GAS I	TINL	O ₁	perator Well No.:		
LOCATION: Elevation: 1356		Qı	adrangle: BERLIN		
District: ELK		C	ounty: HARRISON		
Latitude: 2750	Feet South of 39	Deg. 07	Min. 30	Sec.	
Longitude 2500	Feet West of 80	Deg. 15	Min 00	Sec	

Company:

ly.				
Address:	Casing &	Used in	Left in well	Cement fill
HUNT MARCELLUS OPERATION CO 1800 NORTH AKARD STREET DALLAS, TX. 75201-2300	Tubing	drilling		up Cu. Ft.
	20*	50	50	58
Agent: JOHN NOCK CTL ENGINE	13-3/8"	330	330	182
Inspector: TRISTIN JENKINS	9-5/8"	2,310	2,310	744
Date Permit Issued: 11/23/2010	5-1/2"	13,280	13,280	2522
Date Well Work Commenced: 01/03/2011				
Date Well Work Completed: 07/13/2011				
Verbal Plugging:			6	
Date Permission granted on:		O(C	CEIVED	
Rotary X Cable Rig		Unice	of Oil & G	as
Total Vertical Depth (ft): 7,830'		NO	1 9 2913	
Total Measured Depth (ft): 13,299'		1	* 0 (UI)	
Fresh Water Depth (ft.): 61' & 285'		MM/Do	partment	~£
Salt Water Depth (ft.): 820' & 1985'	F	nvironso	erital Prote	Ol
Is coal being mined in area (N/Y)? N		Tren Sinin	omai Fron	PUHON -
Coal Depths (ft.): N/A				
Void(s) encountered (N/Y) Depth(s) N				

OPEN FLOW DATA (If more Producing formation MARC		ease include additional data on separate sheet) lepth (ft) ⁷⁸³⁰ '
Gas: Initial open flow 0	MCF/d Oil: Initial open flow 0	Bbl/d
Final open flow 4100	MCF/d Final open flow 0	Bbl/d
Time of open flow betw	een initial and final tests 317	Hours
Static rock Pressure 3465	psig (surface pressure) after 21	6 Hours
Second producing formatio	n NA Pay zone dep	oth (ft)
Gas: Initial open flow	MCF/d Oil: Initial open flow	
	MCF/d Final open flow	
	een initial and final tests	
_	psig (surface pressure) after	

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete:

Date

Were core samples taken? Yes	_ No_X	We	re cuttings caugh	during drilling?	Yes X No
Were Y/N Electrical, N/N Mecha	nical, Y or Geo	physical logs i	ecorded on this v	vell?	
NOTE: IN THE AREA BELOVER FRACTURING OR STIMULATING DETAILED GEOLOGICAL RECOUNTERED BY THE WELL.	NG, PHYSICAL C ORD OF THE TO	HANGE, ETO PS AND BOT	C. 2). THE WEI TOMS OF ALL	LL LOG WHICE FORMATIONS	H IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Sti	mulating:				
MARCELLUS 12,984-12,720 (48 shots, 3	,645 Sks. Prop, 10,7	724 bbl. water)	12,625-12,368 (46	shots, 3,640 Sks	. Prop, 9,118 bbl. water)
MARCELLUS 12,275-12,120 (32 shots, 2	2,430 Sks. Prop, 6,5	80 bbl. water) '	12,025-11,725 (56	shots, 3,300 Sks	. Prop. 9,101 bbl. water)
MARCELLUS 11,640-11,385 (48 shots,	3,640 Sks. Prop, 8,6	84 bbl. water) 1	1,276-11,030 (48	shots, 3,670 Sks	. Prop, 9,302 bbl. water)
MARCELLUS 10,950-10,705 (48 shots,	3,647 Sks. Prop, 8,5	53 bbl. water)	10,605-10,385 (48	3 shots, 3,640 Sks	. Prop, 8,530 bbl. water)
MARCELLUS 10,290-10,036 (48 shots,	3,640 Sks. Prop. 8,	361 bbl. water)	9,950-9,695 (48	shots, 3,650 Sks	. Prop, 8,513 bbl. water)
MARCELLUS 9,625-9,375 (48 shots, 3	3,870 Sks. Prop, 8,9	92 bbl. water)	9,300-9,075 (48	shots, 3,886 Sks	. Prop, 8,942 bbl. water)
MARCELLUS 8,990-8,740 (48 shots, 3	,886 Sks. Prop, 8,8	26 bbl. water)	8,655-8,392 (48	shots, 3,886 Sks	. Prop, 8,945 bbl. water)
Formations Encountered: Surface:		op Depth	/		Bottom Depth
Sycamore Grit - Top 6,902'MD/	TVD				
Tully Limestone - Top 7,325'MD	D/7,308' TVD				
Hamilton Shale - Top 7,400'MD	/7,372' TVD				
Marcellus Shale - Top 7,521'MI	D/7,464' TVD				
TD in Marcellus Shale at 13,299	9' MD				
Annual Control of the					
			<u> </u>		
		· ·			