

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

December 30, 2013

WELL WORK PERMIT

Horizontal 6A Well

This permit, API Well Number: 47-1706397, issued to ANTERO RESOURCES CORPORATION, is evidence of permission granted to perform the specified well work at the location described on the attached pages and located on the attached plat, subject to the provisions of Chapter 22 of the West Virginia Code of 1931, as amended, and all rules and regulations promulgated thereunder, and to all conditions and provisions outlined in the pages attached hereto. Notification shall be given by the operator to the Oil and Gas Inspector at least 24 hours prior to the construction of roads, locations, and/or pits for any permitted work. In addition, the well operator shall notify the same inspector 24 hours before any actual well work is commenced and prior to running and cementing casing. Spills or emergency discharges must be promptly reported by the operator to 1-800-642-3074 and to the Oil and Gas inspector.

Please be advised that form WR-35, Well Operators Report of Well Work is to be submitted to this office within 90 days completion of permitted well work, as should form WR-34 Discharge Monitoring Report within 30 days of discharge of pits, if applicable. Failure to abide by all statutory and regulatory provisions governing all duties and operations hereunder may result in suspension or revocation of this permit and, in addition, may result in civil and/or criminal penalties being imposed upon the operators.

In addition to the applicable requirements of this permit, and the statutes and rules governing oil and gas activity in WV, this permit may contain specific conditions which must be followed. Permit conditions are attached to this cover letter.

Per 35CSR-4-5.2.g this permit will expire in two (2) years from the issue date unless permitted well work is commenced. If there are any questions, please feel free to contact me at (304) 926-0499 ext. 1654.

James Martin

Chief

Operator's Well No: MCMILLIAN UNIT 1H

Farm Name: TRUSTEES CHESTNUT GROVE (

API Well Number: 47-1706397

Permit Type: Horizontal 6A Well

Date Issued: 12/30/2013

Promoting a healthy environment.

API Number: 17-06397

PERMIT CONDITIONS

West Virginia Code § 22-6A-8(d) allows the Office of Oil and Gas to place specific conditions upon this permit. Permit conditions have the same effect as law. <u>Failure to adhere to the specified permit</u> conditions may result in enforcement action.

CONDITIONS

- 1. This proposed activity may require permit coverage from the United States Army Corps of Engineers (USACOE). Through this permit, you are hereby being advised to consult with USACOE regarding this proposed activity.
- 2. If the operator encounters an unanticipated void, or an anticipated void at an unanticipated depth, the operator shall notify the inspector within 24 hours. Modifications to the casing program may be necessary to comply with W. Va. Code § 22-6A-5a (12), which requires drilling to a minimum depth of thirty feet below the bottom of the void, and installing a minimum of twenty (20) feet of casing. Under no circumstance should the operator drill more than fifty (50) feet below the bottom of the void or install less than twenty (20) feet of casing below the bottom of the void.
- 3. When compacting fills, each lift before compaction shall not be more than 12 inches in height, and the moisture content of the fill material shall be within limits as determined by the Standard Proctor Density test of the actual soils used in specific engineered fill, ASTM D698, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort, to achieve 95 % compaction of the optimum density. Each lift shall be tested for compaction, with a minimum of two tests per lift per acre of fill. All test results shall be maintained on site and available for review.
- 4. Operator shall install signage per § 22-6A-8g (6) (B) at all source water locations included in their approved water management plan within 24 hours of water management plan activation.
- 5. Oil and gas water supply wells will be registered with the Office of Oil and Gas and all such wells will be constructed and plugged in accordance with the standards of the Bureau for Public Health set forth in its Legislative rule entitled *Water Well Regulations*, 64 C.S.R. 19. Operator is to contact the Bureau of Public Health regarding permit requirements. In lieu of plugging, the operator may transfer the well to the surface owner upon agreement of the parties. All drinking water wells within fifteen hundred feet of the water supply well shall be flow tested by the operator upon request of the drinking well owner prior to operating the water supply well.
- 6. Pursuant to the requirements pertaining to the sampling of domestic water supply wells/springs the operator shall, no later than thirty (30) days after receipt of analytical data provide a written copy to the Chief and any of the users who may have requested such analyses.
- 7. If any explosion or other accident causing loss of life or serious personal injury occurs in or about a well or well work on a well, the well operator or its contractor shall give notice, stating the particulars of the explosion or accident, to the oil and gas inspector and the Chief, within 24 hours of said accident.
- 8. During the casing and cementing process, in the event cement does not return to the surface, the oil and gas inspector shall be notified within 24 hours.

Applicant: Antero Resources Corporation Reference ID: McMillan Unit 1H (Chestnut Pad) (09/26/2013) Status: New

Type: Horizontal 6A Well Permit ID: New/Pending Printed: Dec. 30, 2013

2:06 PM

WW-6B: General	and Location II	<u>nformation</u>					
API Number:		47-017-06397		(47	-)	
Operator's Well N	umber:	McMillan Unit 1	Н				
Filing Fee:		C First Well o	n Pad ©	Subsec	uent Well	on Pad	5,150.00
Well Pad Name:		Chestnut Pad					
Surface Owner:		Trustees of Che	estnut Grove	e Church	1		
Public Road Acce	ss:	CR 14					
Please attach eac Well Plat Wellbore So		g as seperate do	ocuments:				
County:	Doddridge	•	D	istrict:	We	st Union	▼
Quadrangle:	SMITHBURG						
Top Hole(UTM NA Easting: 5	AD83): 24020	Northing:	4357130		Zone:	17 🔻	Ø.
Proposed Landing	<u> </u>	1 F	4357252		- [17	AT
Easting: 5	24219	Northing:	4337232		Zone:	17 🔻	
Proposed Bottom	Hole(UTM):						
Easting: 5	25374	Northing:	4354393		Zone:	17 ▼	
Elevations (feet)	- Current Grou	nd: 1155	Pr	oposed	Post-Cons	struction:	1115
Well Type:	Gas		0	Oil			
	C Undergrou	und Storage	0	Other			
Will well be drilled	more than 100	feet into the Ond	ondaga Gro	up? O	Yes 🖲 N	No	
Depth Type:	Shallow		0	Deep			
Existing Pad?	O Yes		(No			

Target Formations

Complete the following table.			
Target Formation	Depth-Top (ft)	Anticipated Thickness (ft)	Associated Pressure (psi)
Marcellus Shale	7200	55	2950

Depth Specifics

Proposed Post-Construction Elevation:	1377		
Proposed Total Vertical Depth:	7200	(ft.)	
Formation at Total Vertical Depth:	Marcellus Sha	ale	
Proposed Total Measured Depth:	18750	(ft.)	
Proposed Total Horizontal Leg Length:	10120	(ft.)	
Method to Determine Fresh Water Depth:			
Offset well records. Depths has	ive been ac	djusted according to	A
			₩.

Approximate Fresh Water Strata Depths	
222 (ft.)	
249 (ft.)	

		Approximate Coal Seam Depths
295	(ft.)	Coal Seam Name, if known:
812	(ft.)	Coal Seam Name, if known:
1122	(ft.)	Coal Seam Name, if known:

	Approximate Depth to Possible Void(coal mine, karst, other)	
(ft.)	Not Anticipated:	

Approximate Saltwater Depths	
1020 (ft.)	
1514 (ft.)	

Well Work and Mine Details

Is proposed well location directly overlying or tributary to an	active mine?	
C Yes • No		
If Yes, indicate name, depth, coal seam and owner of mine:		
Coal Seam:	Depth:	
Mine Name:	Owner:	
Describe proposed well work, including the drilling and plug	ging back of any pilot hole.	
Drill, perforate, fracture a new horizon	ntal shallow well and	A.
complete Marcellus Shale.		
Describe fracturing/stimulating methods in detail, including a	inticipated max pressure and anticipa	ated max rate.
Antero plans to pump Slickwater into the formation in order to ready the well fowill be comprised of approximately 99 pwith less than 1 percent special-purpose the attached "List of Anticipated Addit or Stimulating Well."	r production. The fluid ercent water and sand, e additives as shown in	*
Total area to be disturbed, including roads, stockpile area, p Area to be disturbed for well pad only, less access road (acr		
Thea to be distribed for well pad only, less access load (act	60 <i>)</i> . 2.00	

Casing and Cementing

Complete the following	table, adding as m	any rows o	f each	n Type as ne	eded.					
Туре	Size (in) New or Used		Grade		Weight per ft. (lb/ft)	Footage: For Drilling		Intervals: Left in Well		
Conductor	20"	New	H-4	10	94#	40	40		40	
	Wellbore Diameter (in)			Wall Ti	hickness (in)		Burst Pre	ssur	e (psi)	
	24"			0.438"		153	30			
	Cement Type		Yield (cu. ft./sk)		Fillup - Cubic	Feet Top of Cement			Circulated to Surface?	
	Class A		1.18		38		0		V	
	Size (in) New or Used									
Туре	Size (in)	New or Used		Grade	Weight per ft. (lb/ft)		age: For rilling	Inte	rvals: Left in Well	
Type Fresh Water ▼	Size (in)		J-5	Grade 5/H-40	• .		•	Inte	Well	
		Used New	J-5	5/H-40	(lb/ft)	D	•	300	Well	
	13-3/8"	Used New	J-5	5/H-40	(lb/ft) 54.5#/48#	D	rilling Burst Pre	300	Well)	
	13-3/8" Wellbore Dia	Used New ameter (in)		5/H-40 Wall T	(lb/ft) 54.5#/48#	300 273	rilling Burst Pre	300 ssur	Well)	
	13-3/8" Wellbore Dia	Used New ameter (in)		5/H-40 Wall TI	(lb/ft) 54.5#/48# hickness (in)	300 273	Burst Pre Top of	300 ssur	e (psi) Circulated to	

Туре	Size (in)	New or Used		Grade	Weight per ft. (lb/ft)		age: For rilling	Intervals: Left in Well	
Coal	9-5/8"	New	J-5	5	36#	2450		2450	
	Wellbore Dia	ameter (in)		Wall Ti	hickness (in)	ickness (in) Burst P			
	12-1/4"			0.352"		352	20		
	Cement Ty	ре	Yiel	d (cu. ft./sk)	Fillup - Cubic	Feet	Top of Cemen		
	Class A		1.18		998		0	~	
Туре	Size (in)	New or Used		Grade	Weight per ft. (lb/ft)		age: For rilling	Intervals: Left in Well	
Production _	5-1/2"	New	P-110		20# 18750		0	18750	
	Wellbore Dia	ameter (in)	Wall Thickness (in)			Burst Pressure (psi)			
	8.75"/8.5"		0.361"			12630			
	Cement Ty	ре	Yield (cu. ft./sk)		Fillup - Cubic	Feet Top of Cement			
	Lead-H/POZ & Ta	il - H	H/POZ-1.44		4763		1950		
Туре	Size (in)	New or Used		Grade	Weight per ft. (lb/ft)			Intervals: Left in Well	
Tubing	2-3/8"	New	N-8	30	4.7#	N/A		7100	
	Wellbore Dia	ameter (in)	Wall Thickr		ickness (in)		Burst Pressure (psi)		
	4.778"		0.19"			11200			
	Cement Ty	ре	Yield (cu. ft./sk)		Fillup - Cubic	Feet Top Cem			
	N/A		N/A		N/A		N/A		

Packers

Will Packers be Used?	Yes	No	
If Yes, complete the	following	:	

Kind	Sizes	Depths Set

Fluids, Cuttings Disposal and Reclamation Plan

State:	West Virginia		County:	<u>Doddridge</u>
District:	<u>017</u>		Quadrangle:	SMITHBURG
Zone:	<u>17</u>			
Northing:	4357130		Easting:	<u>524020</u>
ĺ				
API Numb	ber:	<u>47-017-06397</u>		
Operator	Well Number:	McMillan Unit 1H		
Do you a	inticipate drilling/red	drilling well work?		
(• Yes C No)		
Will a pit	be used for pluggir	ng activities?	No	

No pit will be used at this site. *See Closed Loop for Addtl	A.
	\forall
nthetic liner be used in the pit? Yes • No	
so, what ml.? N/A	
d Disposal Method For Treated Pit Waste Water:	
Underground Injection (UIC Permit Number	
Reuse (at API Number	
Form WR-34	
Other (explain)	
ed loop system be used? • Yes C No	
so, describe:	
Drilling and Flowback fluids will be stored in tanks.	^
Cuttings will be tanked and hauled off site.	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half	
Cuttings will be tanked and hauled off site. 2. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the	
Cuttings will be tanked and hauled off site. 2. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an	
L. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 3. Frac tanks for any excess capacity mud storage that is	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 2. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 1. A flow line that transports the mud from the wellbore to the	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 2. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 3. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning	
Lettings will be tanked and hauled off site. 2. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 3. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 4. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps	
Cuttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 2. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 3. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning	
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 3. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 4. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole	
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half ounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility. Frac tanks for any excess capacity mud storage that is equired bayound the rig's steel pits A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole. Clease note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the	
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility B. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits A. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning B. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole Clease note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the	
Lettings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 2. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 3. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the	
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half ounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility. Frac tanks for any excess capacity mud storage that is equired bayound the rig's steel pits A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole. Clease note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the	
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole. Please note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the	•
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 3. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 4. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole 2. Clease note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the	•
Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half counds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 3. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 4. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole Please note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the definition of a "closed loop" mud system. Definition of a "closed loop" mud system.	·
Luttings will be tanked and hauled off site. 1. Steel mud pits as part of the rig equipment for cleaning and conditioning the mud prior to being pumped down hole 2. Half rounds under the shale shakers for capturing cuttings and an auger for transporting cuttings from the half round to the cuttings boxes that are used to haul the cuttings to an approved offsite disposal facility 2. Frac tanks for any excess capacity mud storage that is required bayound the rig's steel pits 3. A flow line that transports the mud from the wellbore to the steel pits for cleaning and conditioning 5. Hose lines running from the steel mud pits to the mud pumps and from the mud pumps to the top drive for transporting the mud to the drill pipe to be sent down hole Please note: We DO NOT use an earthen reserve pit. Not using an earthen reserve pit is generally considered to be the definition of a "closed loop" mud system.	Ψ.

N/A	* *
Additives to be used in drilling medium?	
Please See Attachment	÷
Drill cuttings disposal method? Leave in Pit (medium used) N/A Explain:	
Landfill (name/permit number?)	
Removed Offsite (name/permit number?) Meadowfill Landfill-Permit #SWF-1032-98	
,	

		Propose	d Revegetation Treatment:		
Acres Disturbed:	<u>17.91</u>		Prevegetation pH:	N/A	
Lime Tons/acre to c	orrect to pH: 2-4				
Fertilizer (10-20-20	or equivalent): 50	00	lbs/acre		
Mulch	2-3 lb	s/acre			
Comments:	Hay or straw	or Wood	Fiber (will be used whe	ere needed)	^
	1		ccess Roads to Pads (3.9 & Auxiliary Pad (11.24)		~
]				

Seed Mixtures						
Area Type	Seed Type	lbs/acre				
Temporary 💌	Tall Fescue	45				
Temporary 💌	Perennial Rye Grass	20				
Permanent 💌	Tall Fescue	45				
Permanent 💌	Perennial Rye Grass	20				

19) Describe proposed well work, including the drilling and plugging back of any pilot hole:
Drill, perforate, fracture a new horizontal shallow well and complete Marcellus Shale.
20) Describe fracturing/stimulating methods in detail, including anticipated max pressure and max rate:
Antero plans to pump Slickwater into the Marcellus Shale formation in order to ready the well for production. The fluid will be comprised of approximately 99 percent water and sand, with less than 1 percent special-purpose additives as shown in
the attached "List of Anticipated Additives Used for Fracturing or Stimulating Well."
21) Total Area to be disturbed, including roads, stockpile area, pits, etc., (acres): 17.91 acres
22) Area to be disturbed for well pad only, less access road (acres): 2.69 acres
23) Describe centralizer placement for each casing string:
Conductor: no centralizers
Surface Casing: one centralizer 10' above the float shoe, one on the insert float collar and one every 4th joint spaced up the hole to surface.
Intermediate Casing: one centralizer above float joint, one centralizer 5' above float collar and one every 4th collar to surface. Production Casing: one centralizer at shoe joint and one every 3 joints to top of cement in intermediate casing.
24) Describe all cement additives associated with each cement type:

24) Describe all cement additives associated with each cement type:

Conductor: no additives, Class A cement.

Surface: Class A cement with 2-3% calcium chloride

Intermediate: Class A cement with 1/4 lb of flake, 5 gallons of clay treat

Production: Lead cement- 50/50 Class H/Poz + 1.5% salt + 1% C-45 + 0.5% C-16a + 0.2% C-12 + 0.45% C-20 + 0.05% C-51 Production: Tail cement- Class H + 45 PPS Calcium Carbonate + 1.0% FL-160 + 0.2% ACGB-47 + 0.05% ACSA-51 + 0.2% ACR-20

25) Proposed borehole conditioning procedures:

Conductor: blowhole clean with air, run casing, 10 bbls fresh water.

Surface: blowhole clean with air, trip to conductor shoe, trip to bottom, blowhole clean with air, trip out, run casing, circulate pipe capacity + 40 bbls fresh water followed by 25 bbls bentonite mud, 10 bbls fresh water spacer.

Intermediate: blowhole clean with air, trip to surface casing shoe, trip to bottom, blowhole clean with air, trip out, run casing, circulate 40 bbls brine water followed by 10 bbls fresh water and 25 bbls bentonite mud, pump 10 bbls fresh water.

Production: circulate with 14 lb/gal NaCl mud, trip to middle of lateral, circulate, pump high viscosity sweep, trip to base of curve, pump high viscosity sweep, trip to top of curve, trip to bottom, circulate, pump high viscosity sweep, trip out, run casing, circulate 10 bbls fresh water, pump 48 bbls barite pill, pump 10 bbls fresh water followed by 48 bbls mud flush and 10 bbls water.

*Note: Attach additional sheets as needed.

Form WW-9 Additives Attachment

SURFACE INTERVAL

- 1. Fresh Water
- 2. Soap –Foamer AC
- 3. Air

INTERMEDIATE INTERVAL

STIFF FOAM RECIPE:

- 1) 1 ppb Soda Ash / Sodium Carbonate-Alkalinity Control Agent
- 2) 1 ppb Conqor 404 (11.76 ppg) / Corrosion Inhibitor
- 3) 4 ppb KLA-Gard (9.17 ppg) / Amine Acid Complex-Shale Stabilizer
- 4) 1ppb Mil Pac R / Sodium Carboxymethylcellulose-Filtration Control Agent
- 5) 12 ppb KCL / Potassium Chloride-inorganic Salt
- 6) Fresh Water 80 bbls
- 7) Air

PRODUCTION INTERVAL

1. Alpha 1655

Salt Inhibitor

2. Mil-Carb

Calcium Carbonate

3. Cottonseed Hulls

Cellulose-Cottonseed Pellets – LCM

Mil-Seal

Vegetable, Cotton & Cellulose-Based Fiber Blend – LCM

5. Clay-Trol

Amine Acid Complex – Shale Stabilizer

6. Xan-Plex

Viscosifier For Water Based Muds

7. Mil-Pac (All Grades)

Sodium Carboxymethylcellulose - Filtration Control Agent

8. New Drill

Anionic Polyacrylamide Copolymer Emulsion - Shale Stabilizer

9. Caustic Soda

Sodium Hydroxide – Alkalinity Control

10. Mil-Lime

Calcium Hydroxide – Lime

11. LD-9

Polyether Polyol – Drilling Fluid Defoamer

12. Mil Mica

Hydro-Biotite Mica – LCM

13. Escaid 110

Drilling Fluild Solvent – Aliphatic Hydrocarbon

14. Ligco

Highly Oxidized Leonardite - Filteration Control Agent

15. Super Sweep

Polypropylene – Hole Cleaning Agent

16. Sulfatrol K

Drilling Fluid Additive – Sulfonated Asphalt Residuum

17. Sodium Chloride, Anhydrous

Inorganic Salt

18. D-D

Drilling Detergent – Surfactant

19. Terra-Rate

Organic Surfactant Blend

20. W.O. Defoam

Alcohol-Based Defoamer

21. Perma-Lose HT

Fluid Loss Reducer For Water-Based Muds

22. Xan-Plex D

Polysaccharide Polymer – Drilling Fluid Viscosifier

23. Walnut Shells

Ground Cellulosic Material – Ground Walnut Shells – LCM

24. Mil-Graphite

Natural Graphite – LCM

25. Mil Bar

Barite – Weighting Agent

26. X-Cide 102

Biocide

27. Soda Ash

Sodium Carbonate – Alkalinity Control Agent

28. Clay Trol

Amine Acid complex – Shale Stabilizer

29. Sulfatrol

Sulfonated Asphalt – Shale Control Additive

30. Xanvis

Viscosifier For Water-Based Muds

31. Milstarch

Starch – Fluid Loss Reducer For Water Based Muds

32. Mil-Lube

Drilling Fluid Lubricant

Well Site Safety Plan Antero Resources

Well Name: Mishka Unit 1H, McMillan Unit 1H and 2H,

Hoskinson Unit 1H and 2H

Pad Location: CHESTNUT PAD

Doddridge County/ Grant District

GPS Coordinates: Lat 39°21'47.85"/Long 80°43'16.23" (NAD83)

Driving Directions:

west virginia department of environmental protection

Water Management Plan: Primary Water Sources

WMF-01571

API/ID Numbers

047-017-06397

Operator

Antero Resources

McMillan Unit 1H

Important:

For each proposed primary water source (including source intakes for purchased water sources) identified in your water management plan, and summarized herein, DEP has made an evaluation concerning water availability over the specified date range. DEP's assessment is based on the following considerations:

- Statistical analysis of historical USGS stream gauge data (transferred to un-gauged locations as necessary);
- ·Identification of sensitive aquatic life (endangered species, mussels, etc.);
- Quantification of known existing demands on the water supply (Large Quantity Users);
- ·Minimum flows required by the Army Corps of Engineers; and
- ·Designated stream uses.

Based on these factors, DEP has provided, for each intake location (and origination point for purchased water), a reference gauge location and discharge flow reading which must be surpassed prior to withdrawals. Additionally, DEP has established a minimum passby flow at the withdrawal location which must also be surpassed prior to withdrawals. These thresholds are considered terms of the permit and are enforceable as such.

DEP is aware that some intake points will be used for mutiple wells and well sites. In these cases, the thresholds set by the Water Management Plan are to be interepreted as total withdrawal limits for each location over the specified date range regardless of how many wells are supported by that intake.

For all purchased water intakes, determinations of water availability are made at the original source intake location. It is the responsibility of the Oil and Gas Operator, not the seller, to cease withdrawal of water from the seller when flows are less than the minimum gauge reading at the stream gauge referenced by the Water Management Plan in order to protect stream uses.

Note that the determinations made herein are based on the best available data, but it is impossible to predict water availability in the future. While the DEP has carefully established these minimum withdrawal thresholds, it remains the operator's responsibility to protect aquatic life at all times. Approval to withdrawal is contingent upon permission from the land owner. It is the responsibility of the operator to secure and maintain permission prior to any withdrawals.

The operator is reminded that 24-48 hours prior to withdrawing (or purchasing) water, DEP must be notified by email at DEP.water.use@wv.gov.

APPROVED DEC 3 0 2013

Source Summary

WMP-01571

API Number:

047-017-06397

Operator:

Antero Resources

McMillan Unit 1H

Stream/River

Ohio River @ Ben's Run Withdrawal Site Spurce

Tyler

Owner:

Ben's Run Land Company

Limited Partnership

Start Date

End Date

Total Volume (gal)

Max, daily purchase (gal)

9999999

Intake Latitude: Intake Longitude:

7/7/2014

7/7/2015

10,980,000

39.46593

-81.110781

Regulated Stream?

Ohio River Min. Flow Ref. Gauge ID:

Max. Pump rate (gpm):

3,360

Min. Gauge Reading (cfs):

6,468.00

Min. Passby (cfs)

Ohio River Station: Willow Island Lock & Dam.

DEP Comments:

Refer to the specified station on the National Weather Service's Ohio River forecast

website: http://www.erh.noaa.gov/ohrfc//flows.shtml

West Fork River @ JCP Withdrawal Source

Harrison

Owners

James & Brenda Raines

Start Date

End Date

Total Volume (gal) Max. daily purchase (gal)

39.320913

Intake Latitude: Intake Longitude: -80.337572

7/7/2014

7/7/2015

10,980,000

3061000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):

2,000

Regulated Stream? Stonewall Jackson Dam Ref Gauge ID:

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

146.25

DEP Comments:

West Fork River @ McDonald Withdrawal Source

Harrison

Owner:

David Shrieves

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: Intake Longitude:

7/7/2014

7/7/2015

10,980,000

39.16761

-80.45069

Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID: 3061000

3,000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

106.30

DEP Comments:

• Source	West Fork Rive	er @ GAL Withdr	awal		Harrison	Owner:	David Shrieves
Start Date 7/7/2014	End Date 7/7/2015		al Volume (gal) 1 0,980,000	Max. daily p	urchase (gal)	Intake Latitude: 39.16422	Intake Longitude: -80.45173
✓ Regulated S	tream? Ston	ewall Jackson Da	m Ref. Gauge II): 30610 0	00	WEST FORK RIVER AT ENTE	RPRISE, WV
Max. Pump ra	ate (gpm):	2,000 M	lin. Gauge Read	ing (cfs):	175.00	Min. Passby (cf	(s) 106.30
	DEP Commer	nts:					
Source	Middle Island (Creek @ Mees W	ithdrawal Site		Pleasants	Owner:	Sarah E. Mees
Start Date	End Date		al Volume (gal)	Max. daily p	urchase (gal)	Intake Latitude:	
7/7/2014	7/7/2015	1	.0,980,000			39.43113	-81.079567
☐ Regulated S	stream?		Ref. Gauge II): 311450	00	MIDDLE ISLAND CREEK AT	LITTLE, WV
Max. Pump ra	ate (gpm):	3,360 M	lin. Gauge Read	ing (cfs):	52.59	Min. Passby (cf	s) 47.63
	DEP Commer	nts:					
o Source I	Middle Island (Creek @ Dawson	Withdrawal		Tyler	Owner: G a	ary D. and Rella A. Dawson
Start Date 7/7/2014	End Date 7/7/2015		al Volume (gal) .0,980,000	Max. daily p	urchase (gal)	Intake Latitude: 39.379292	Intake Longitude: -80.867803
☐ Regulated S	tream?		Ref. Gauge II	D: 31145 (00	MIDDLE ISLAND CREEK AT	LITTLE, WV
Max. Pump ra	ate (gpm):	3,000 M	lin. Gauge Read	ing (cfs):	76.03	Min. Passby (cf	s) 28.83
	DEP Commer	nts:					

Source McElroy Creek @ Forest Withdrawal Tyler Forest C. & Brenda L. Owner: Moore Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 7/7/2014 7/7/2015 10,980,000 -80.738197 39.39675 ☐ Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 74.77 Min. Passby (cfs) 13.10 **DEP Comments:** Source Meathouse Fork @ Gagnon Withdrawal Doddridge Owner: George L. Gagnon and Susan C. Gagnon Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 7/7/2014 7/7/2015 10,980,000 39.26054 -80.720998 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1.000 Min. Gauge Reading (cfs): 71.96 Min. Passby (cfs) 11.74 **DEP Comments:** Meathouse Fork @ Whitehair Withdrawal Source Doddridge **Elton Whitehair** Owner: **End Date** Start Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 7/7/2014 7/7/2015 10,980,000 39.211317 -80.679592 ☐ Regulated Stream? Ref. Gauge ID: MIDDLE ISLAND CREEK AT LITTLE, WV 3114500 Max. Pump rate (gpm): 1.000 Min. Gauge Reading (cfs): 69.73 7.28 Min. Passby (cfs)

DEP Comments:

Source	Tom's Fork @ 1	Erwin With	drawal		Doddridge	Owner:	John F. Er	win and Sandra E. Erwin
Start Date 7/7/2014	End Date 7/7/2015		Total Volume (gal) 10,980,000	Max. daily	purchase (gal)		e Latitude: 9. 174306	Intake Longitude: -80.702992
☐ Regulated	Stream?		Ref. Gauge I	D: 3114 5	500	MIDDLE ISLAND	CREEK AT	LITTLE, WV
Max. Pump i	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min.	Passby (cf	(s) 0.59
	DEP Commer	nts:						
Source	Arnold Creek @	P Davis Wit	hdrawal		Doddridge	Owner:		Jonathon Davis
Start Date 7/7/2014	End Date 7/7/2015		Total Volume (gal) 10,980,000	Max. daily	purchase (gal)		e Latitude: 2.302006	Intake Longitude: -80.824561
☐ Regulated	Stream?		Ref. Gauge I	D: 3114 5	500	MIDDLE ISLANI	CREEK AT	LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min.	Passby (cf	s) 3.08
	DEP Commer	nts:						
Source	Buckeye Creek	@ Powell '	Withdrawal		Doddridge	Owner:		Dennis Powell
Start Date 7/7/2014	End Date 7/7/2015		Total Volume (gal) 10,980,000	Max. daily	purchase (gal)		e Latitude: •.277142	Intake Longitude: -80.690386
☐ Regulated	Stream?		Ref. Gauge I	D: 3114 5	500	MIDDLE ISLAND	O CREEK AT	LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ing (cfs):	69.73	Min.	Passby (cf	(s) 4.59
	DEP Commer	nts:						

South Fork of Hughes River @ Knight Withdrawal Source Ritchie Owner: Tracy C. Knight & Stephanie C. Knight Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 7/7/2014 7/7/2015 10,980,000 39.198369 -80.870969 ☐ Regulated Stream? Ref. Gauge ID: 3155220 **JOUTH FORK HUGHES RIVER BELOW MACFARLAN, WI** Max. Pump rate (gpm): 3,000 Min. Gauge Reading (cfs): 39.80 Min. Passby (cfs) 1.95 **DEP Comments:** Source North Fork of Hughes River @ Davis Withdrawal Ritchie Owner: Lewis P. Davis and Norma J. Davis Start Date **End Date** Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 7/7/2014 10,980,000 7/7/2015 39.322363 -80.936771 ☐ Regulated Stream? Ref. Gauge ID: **JOUTH FORK HUGHES RIVER BELOW MACFARLAN, W**\ 3155220 Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 35.23 Min. Passby (cfs) 2.19 **DEP Comments:**

Source Summary

WMP-01571

API Number:

047-017-06397

Operator.

Antero Resources

McMillan Unit 1H

Purchased Water

Ohio River @ Select Energy Source

Pleasants

Owner.

Select Energy

Start Date

End Date

Total Volume (gal)

Max. dally purchase (gal)

Intake Latitude: Intake Longitude:

7/7/2014

7/7/2015

10.980.000

500.000

39.346473

-81.338727

Regulated Stream?

Ohio River Min. Flow Ref. Gauge 10:

9999998

Ohio River Station: Racine Dam

Max. Pump rate (gpm):

1.680

Min. Gauge Reading (cfs):

7.216.00

Min. Passby (cfs)

DEP Comments:

Refer to the specified station on the National Weather Service's Ohio River forecast website: http://www.erh.noaa.gov/ohrfc//flows.shtml

Source

Middle Island Creek @ Solo Construction

Pleasants

OWHEL:

Solo Construction, LLC

Start Date:

End Date

Total Volume (gal)

Max. daily purchase gall

Intake Latitude: Intake Longitude

7/7/2014

7/7/2015

10,980,000

1,000,000

9999999

39,399094

-81.185548

Regulated Stream?

Max. Pump rate (gpm):

Ohio River Min. Flow Ref. Gauge ID:

Min. Gauge Reading (cfs):

Min. Passby (cfs)

Ohio River Station: Willow Island Lock & Dam

DEP Comments:

Elevation analysis indicates that this location has the same elevation as Middle Island Creek's pour point into the Ohio River. As such, it is deemed that water flow at this

6,468.00

location is heavily influenced by the Ohio River.

a Source

Claywood Park PSD

Wood

Owner:

Claywood Park PSD

Start Date

End Date

Total Volume (gal) Max. dally purchase (gal) 10,980,000

Intake Latitude: Intake Longitude:

7/7/2014

✓ Regulated Stream?

7/7/2015

Ref. Gauge ID:

9999998

Ohio River Station: Racine Dam

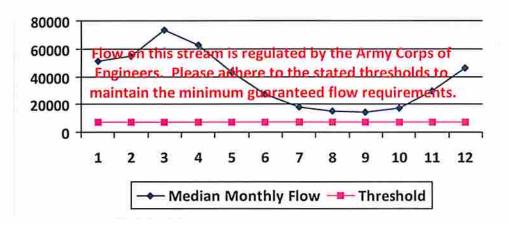
Max. Pump rate (gpm):

Min. Gauge Reading (cfs):

7,216.00

Min. Passby (cfs)

DEP Comments:

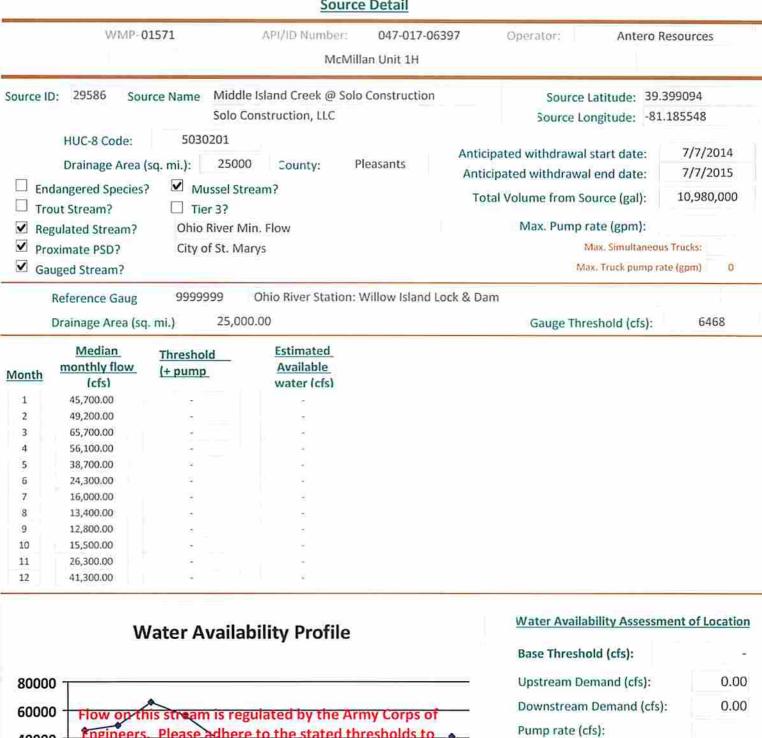

Elevation analysis indicates that this location has approximately the same elevation as Little Kanawha's pour point into the Ohio River. As such, it is deemed that water flow

at this location is heavily influenced by the Ohio River.

9	Source	Sun Valley Public S	ervice District	Harrison	Owner:	Sun Valley PSD
	Start Date 7/7/2014	End Date 7/7/2015	Total Volume (gal) 10,980,000	Max. daily purchase (gal) Intake Latitude: -	Intake Longitude: -
	☑ Regulated	Stream? Stonewal	Jackson Dam Ref. Gauge I	D: 3061000	WEST FORK RIVER AT ENTI	ERPRISE, WV
	Max. Pump	rate (gpm):	Min. Gauge Read	ling (cfs): 171.48	Min. Passby (c	fs)
		DEP Comments:				

WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H Source ID: 29585 Ohio River @ Select Energy Source Name Source Latitude: 39.346473 Select Energy Source Longitude: -81.338727 HUC-8 Code: 5030201 7/7/2014 Anticipated withdrawal start date: Drainage Area (sq. mi.): 25000 County: Pleasants 7/7/2015 Anticipated withdrawal end date: **Endangered Species?** ✓ Mussel Stream? Total Volume from Source (gal): 10,980,000 Trout Stream? Tier 3? 1,680 Max. Pump rate (gpm): Regulated Stream? Ohio River Min. Flow Proximate PSD? Max. Simultaneous Trucks: Max. Truck pump rate (gpm) Gauged Stream? 9999998 Ohio River Station: Racine Dam Reference Gaug 25,000.00 7216 Drainage Area (sq. mi.) Gauge Threshold (cfs): Median Estimated Threshold Available monthly flow (+ pump Month water (cfs) (cfs) 50,956.00 2 54,858.00 3 73,256.00 4 62,552.00 5 43,151.00 6 27,095.00 7 17,840.00 8 14,941.00 9 14,272.00 10 17,283.00 29,325.00 11

Water Availability Profile


Water Availability Assessment of Location

Base Threshold (cfs):	1.5
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	3.74
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

12

46,050.00

"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

10

11

12

guaranteed flow requirements.

8

9

maintain the minimum

3

5

6

7

Median Monthly Flow — Threshold

40000

20000

1

2

0.00

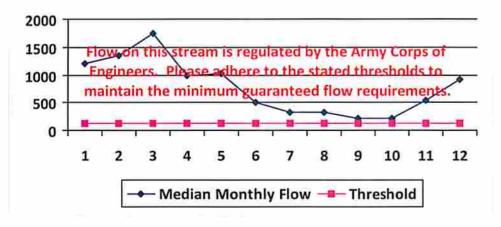
0.00

Headwater Safety (cfs):

Ungauged Stream Safety (cfs):

Min. Gauge Reading (cfs): Passby at Location (cfs):

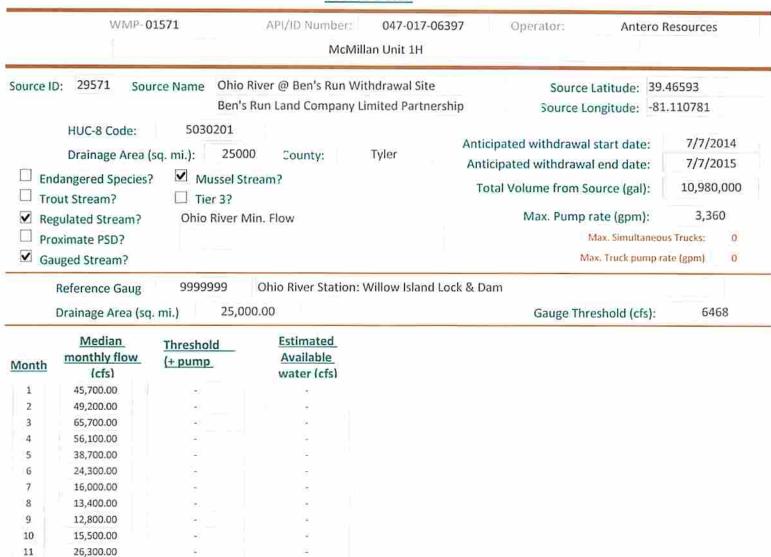
Max. Truck pump rate (gpm) O		WMP-0	1571	API/ID Number:	047-017-063 illan Unit 1H	97 Operator:	Antero Resourc	ces
HUC-8 Code: 5030203 Drainage Area (sq. mi.): 25000 County: Wood Anticipated withdrawal start date: 7/7/2014 Endangered Species? Mussel Stream? Tier 3? Max. Pump rate (gaph): Max. Pump rate (gpm): Max. Simultaneous Trucks: 0 Max. Pump rate (gpm): Max. Truck pump rate (Source I	D: 29587 Sou	mane maneral control of					
Nonth Median Threshold (t-pump Water Availability Profile Water Availability Assessment of Locat Base Threshold (cfs): Downstream Demand (cf	☐ Tre ✓ Re ✓ Pre	Drainage Area (dangered Species? out Stream? gulated Stream? oximate PSD?	5030203 sq. mi.): 250 Mussel S	00 County: Stream?	Wood	Anticipated withdrawal start Anticipated withdrawal end Total Volume from Source Max. Pump rate (g	date: 7/7 date: 7/7 (gal): 10,9 gpm): multaneous Trucks	7/2015 980,000
Month Mont	⊻ Ga	Reference Gaug			: Racine Dam			
1	Month	Median monthly flow	Threshold	Estimated Available				
3	1		.5					
4 62,552.00 5 43,151.00 6 27,095.00 7 17,840.00 8 14,941.00 9 14,272.00 10 17,283.00 11 29,325.00 12 46,050.00 Water Availability Profile Water Availability Profile Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs):	2	54,858.00	22					
Water Availability Profile Water Availability Assessment of Location Stream is regulated by the Army Corps of Engineers. Please at the reto the stated thresholds to maintain the minimum governteed flow requirements. Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs):	3	73,256.00	*					
Water Availability Profile Water Availability Assessment of Location Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs):	4		*	*				
Water Availability Profile Water Availability Profile Water Availability Profile Water Availability Profile Water Availability Assessment of Location Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs):	5		*	말				
Water Availability Profile Water Availability Profile Water Availability Profile Water Availability Profile Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): maintain the minimum guaranteed flow requirements. Ungauged Stream Safety (cfs):			12	i i				
Water Availability Profile Water Availability Profile Water Availability Profile Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): maintain the minimum goveranteed flow requirements. Ungauged Stream Safety (cfs):			2	å				
Water Availability Profile Water Availability Profile Water Availability Profile Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): maintain the minimum governteed flow requirements. Ungauged Stream Safety (cfs):			2	ā				
Water Availability Profile Water Availability Profile Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs):			ie.	*				
Water Availability Profile Water Availability Assessment of Location Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs): Ungauged Stream Safety (cfs): Ungauged Stream Safety (cfs): Ungauged Stream Safety (cfs): Output Downstream Demand (cfs): Pump rate (cfs): Ungauged Stream Safety (cfs): Ungauged Stream Safety (cfs): Output Downstream Demand (cfs): Output Downstream Demand (cfs): D								
Water Availability Profile 80000 Flow on this stream is regulated by the Army Corps of Fngineers. Please athere to the stated thresholds to maintain the minimum guaranteed flow requirements. Water Availability Assessment of Location Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs): O. Ungauged Stream Safety (cfs): O. Downstream Demand (cfs): Pump rate (cfs): Headwater Safety (cfs): O. Downstream Demand		150000000000000000000000000000000000000	5	1				
We see this stream is regulated by the Army Corps of Fingineers. Please as here to the stated thresholds to maintain the minimum governnteed flow requirements. Upstream Demand (cfs): 0.0 Downstream Demand (cfs): 0.0 Pump rate (cfs): Headwater Safety (cfs): 0.0 Ungauged Stream	24		/ater Avail	ability Profile				f Locatio
Flow on this stream is regulated by the Army Corps of Engineers. Please achiere to the stated thresholds to maintain the minimum governnteed flow requirements. Downstream Demand (cfs): 0.0 Pump rate (cfs): Headwater Safety (cfs): 0.0 Ungauged Stream Safety (cfs): 0.0						Base Threshold (c	s):	H
Flow on this stream is regulated by the Army Corps of Fingineers. Please achiere to the stated thresholds to maintain the minimum governnteed flow requirements. Downstream Demand (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs): O.0	8000	0 т	(A.):			Upstream Demand	i (cfs):	0.00
40000 Engineers. Please ashere to the stated thresholds to maintain the minimum governnteed flow requirements. Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs): O.4		_ /	nis stream is re	egulated by the A	rmy Corps of	Downstream Dem	and (cfs):	0.00
20000 maintain the minimum guaranteed flow requirements. Headwater Safety (cfs): 0.0	4000	Cantanana	Charles and the second of the contract	And the second of the second o	THE PART OF THE PARTY OF THE PA	Pump rate (cfs):		
20000 Ungauged Stream Safety (cfs): 0.0	4000	U				Headwater Safety	(cfs)	0.00
Ungauged Stream Safety (cfs): 0.	2000	0	ine illiminating	Swardineed How I	equil enterits.		W 1)	
0 +		M - M	a a a		I II II	Ungauged Stream	Safety (cfs):	0.00
		0 1 1	1 1 1	J E T	1 1 1			


→ Median Monthly Flow -- Threshold

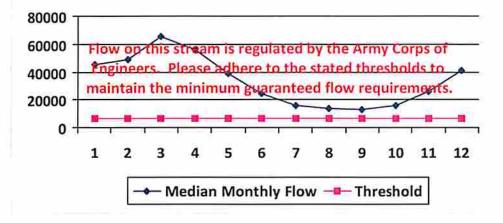
Passby at Location (cfs):

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

Water Availability Profile


Water Availability Assessment of Location

Base Threshold (cfs):	.21
Upstream Demand (cfs):	
Downstream Demand (cfs):	
Pump rate (cfs):	
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs);	0.00
Min. Gauge Reading (cfs):	3
Passby at Location (cfs):	*


"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

12

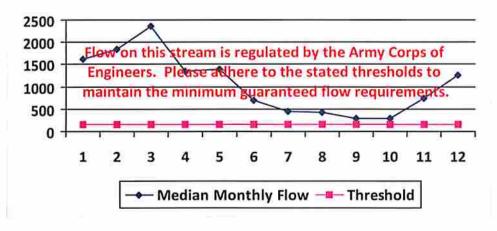
926.12

Water Availability Profile

Water Availability Assessment of Location

Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	7.49
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00

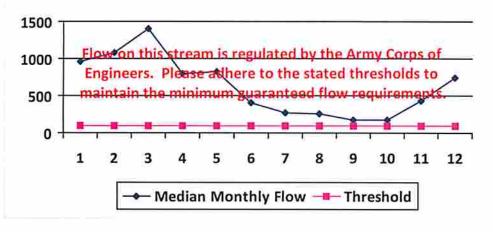
"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.


41,300.00

12

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	1,630.82	+:	68
2	1,836.14	₽.	
3	2,365.03	±1	121
4	1,352.59	19	11 529.
5	1,388.37	*	3.00
6	695.67	*3	96
7	450.73	# 3	(8)
8	430.37	#	(4)
9	299.45	27	727
10	293.59	<u>.</u>	- 3
11	736.74		
12	1,257.84	+;	5.53

Water Availability Profile

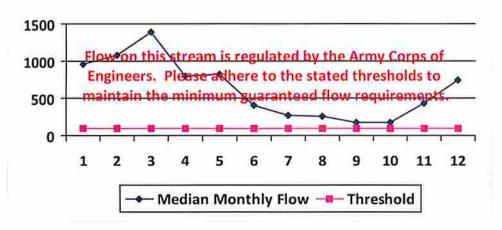

Water Availability Assessment of Location

Base Threshold (cfs):	1.71
Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	4.46
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	

WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H West Fork River @ McDonald Withdrawal 29573 Source ID: Source Name Source Latitude: 39.16761 David Shrieves Source Longitude: -80.45069 HUC-8 Code: 5020002 Anticipated withdrawal start date: 7/7/2014 314.91 Harrison Drainage Area (sq. mi.): County: Anticipated withdrawal end date: 7/7/2015 **Endangered Species?** ✓ Mussel Stream? Total Volume from Source (gal): 10,980,000 Trout Stream? ☐ Tier 3? Max. Pump rate (gpm): 3,000 Regulated Stream? Stonewall Jackson Dam Proximate PSD? Max. Simultaneous Trucks: Gauged Stream? Max. Truck pump rate (gpm) 0 Reference Gaug 3061000 WEST FORK RIVER AT ENTERPRISE, WV Drainage Area (sq. mi.) 759.00 Gauge Threshold (cfs): 234

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	964.98	*	÷:
2	1,086.47	2	41
3	1,399.42	€	-
4	800.34	<u> </u>	5
5	821.52		₹:
6	411.64		=
7	266.70	-	+:
8	254.66		#
9	177.19	÷.	20
10	173.72		8
11	435.94		5
12	744.28	*	

Water Availability Profile

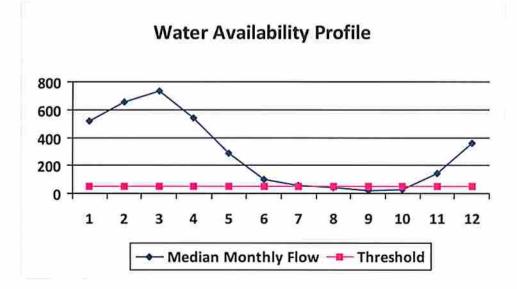

Water Availability Assessment of Location

Base Threshold (cfs):	2.5
Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	6.68
Headwater Safety (cfs):	24.27
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	я
Passby at Location (cfs):	

WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H Source Name West Fork River @ GAL Withdrawal Source ID: 29574 Source Latitude: 39.16422 David Shrieves Source Longitude: -80.45173 5020002 HUC-8 Code: 7/7/2014 Anticipated withdrawal start date: 313.67 Harrison Drainage Area (sq. mi.): County: Anticipated withdrawal end date: 7/7/2015 Endangered Species? ✓ Mussel Stream? 10,980,000 Total Volume from Source (gal): Trout Stream? ☐ Tier 3? Max. Pump rate (gpm): 2,000 Regulated Stream? Stonewall Jackson Dam Proximate PSD? Max, Simultaneous Trucks: 0 Gauged Stream? Max. Truck pump rate (gpm) 0 Reference Gaug 3061000 WEST FORK RIVER AT ENTERPRISE, WV 759.00 Drainage Area (sq. mi.) Gauge Threshold (cfs): 234

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	961.18	×	
2	1,082.19	*	*
3	1,393.91	¥	¥3
4	797.19	2	26
5	818.28	9	8
6	410.02		#:
7	265.65	-	*
8	253.65	*	*)
9	176.49	*	#1
10	173.04	~	4
11	434.22	2	21
12	741.35		

Water Availability Profile

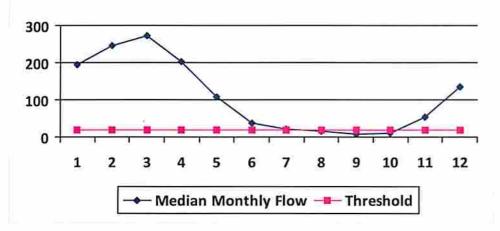


Water Availability Assessment of Location

Base Threshold (cfs):	- 6
Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	4.46
Headwater Safety (cfs):	24.18
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	-

WMP-01571 API/ID Number: 047-01 McMillan Unit 1H	7-06397 Operator: Antero Re	esources
Source ID: 29575 Source Name Middle Island Creek @ Mees Withdra Sarah E. Mees		3113 079567
HUC-8 Code: 5030201 Drainage Area (sq. mi.): 484.78 County: Pleasants ✓ Endangered Species? ✓ Mussel Stream? ☐ Trout Stream? ☐ Tier 3? ☐ Regulated Stream?	Anticipated withdrawal start date: Anticipated withdrawal end date: Total Volume from Source (gal): Max. Pump rate (gpm):	7/7/2014 7/7/2015 10,980,000 3,360
☐ Proximate PSD? ✓ Gauged Stream?	Max. Simultaneous Max. Truck pump rat	
Reference Gaug 3114500 MIDDLE ISLAND CREEK AT LIT Drainage Area (sq. mi.) 458.00	TLE, WV Gauge Threshold (cfs):	45

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)	
1	519.88	55.12	465.14	
2	653.95	55.12	599.22	
3	731.75	55.12	677.01	
4	543.38	55.12	488.65	
5	286.64	55.12	231.90	
6	100.10	55.12	45.36	
7	56.65	55.12	1.91	
8	46.64	55.12	-8.10	
9	23.89	55.12	-30.85	
10	30.01	55.12	-24.72	
11	146.56	55.12	91.83	
12	358.10	55.12	303.37	


Water	Availability	Assessment	of	Location

Base Threshold (cfs):	47.63
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	7.49
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	52.49
Passby at Location (cfs):	47.63

WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H 29576 Middle Island Creek @ Dawson Withdrawal Source ID: Source Name Source Latitude: 39.379292 Gary D. and Rella A. Dawson Source Longitude: -80.867803 5030201 HUC-8 Code: 7/7/2014 Anticipated withdrawal start date: Drainage Area (sq. mi.): 181.34 Tyler County: Anticipated withdrawal end date: 7/7/2015 **Endangered Species?** ✓ Mussel Stream? Total Volume from Source (gal): 10,980,000 Trout Stream? ☐ Tier 3? Max. Pump rate (gpm): 3,000 Regulated Stream? Proximate PSD? Max. Simultaneous Trucks: 0 Gauged Stream? Max. Truck pump rate (gpm) 0 Reference Gaug 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Drainage Area (sq. mi.) 458.00 45 Gauge Threshold (cfs):

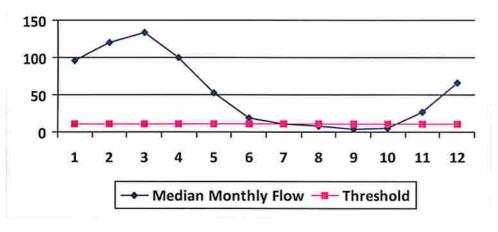
Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)
1	194.47	42.06	152.68
2	244.62	42.06	202.83
3	273.72	42.06	231.93
4	203.26	42.06	161.47
5	107.22	42.06	65.43
6	37.44	42.06	-4.35
7	21.19	42.06	-20.60
8	17.45	42,06	-24.34
9	8.94	42.06	-32.85
10	11.23	42.06	-30.56
11	54.82	42.06	13.04
12	133.96	42.06	92.17

Water Availability Profile

Water Availability Assessment of Location

	Carrier and
Base Threshold (cfs):	17.82
Upstream Demand (cfs):	13.10
Downstream Demand (cfs):	6.55
Pump rate (cfs):	6.68
Headwater Safety (cfs):	4.45
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	76.03
Passby at Location (cfs):	28.82

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.


WMP-01571	API/ID Number:	047-017-06397	Operator: Antero	Resources
	McMill	an Unit 1H		
Source ID: 29577 Source Name	McElroy Creek @ Forest Wi Forest C. & Brenda L. Moore		Source Latitude: 3	9.39675 80.738197
	201 88.85 County: ssel Stream? r 3?	Tyler	nticipated withdrawal start date: Anticipated withdrawal end date: Total Volume from Source (gal): Max. Pump rate (gpm): Max. Simultane	Control of the contro

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	95.28	19.78	75.68
2	119.86	19.78	100.25
3	134.11	19.78	114.51
4	99.59	19.78	79.99
5	52.54	19.78	32.93
6	18.35	19.78	-1.26
7	10.38	19.78	-9.22
8	8.55	19.78	-11.05
9	4.38	19.78	-15.23
10	5.50	19.78	-14.10
11	26.86	19.78	7.26
12	65.63	19.78	46.03

Drainage Area (sq. mi.)

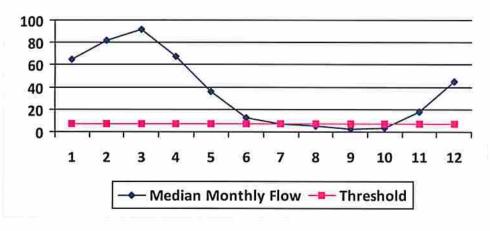
Water Availability Profile

458.00

Water Availability Assessment of Location

Gauge Threshold (cfs):

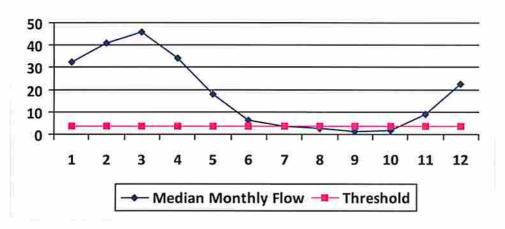
45


Min. Gauge Reading (cfs): Passby at Location (cfs):	74.19 13.09
Ungauged Stream Safety (cfs):	2.18
Headwater Safety (cfs):	2.18
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	4.46
Base Threshold (cfs):	8.73

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	64.99	13.39	51.70
2	81.75	13.39	68.46
3	91.47	13.39	78.19
4	67.93	13.39	54.64
5	35.83	13.39	22.55
6	12.51	13.39	-0.77
7	7.08	13.39	-6.20
8	5.83	13.39	-7.45
9	2.99	13.39	-10.30
10	3.75	13.39	-9.53
11	18.32	13.39	5.04
12	44.76	13.39	31.48

Water Availability Profile


Water Availability Assessment of Location

Base Threshold (cfs):	5.95
Upstream Demand (cfs):	2.23
Downstream Demand (cfs):	2.81
Pump rate (cfs):	2.23
Headwater Safety (cfs):	1.49
Ungauged Stream Safety (cfs):	1.49
Min. Gauge Reading (cfs):	71.96
Passby at Location (cfs):	11.74

WMP-01571	API/ID Number:	047-017-06397	Operator:	Antero R	esources
	McMill	an Unit 1H			
ource ID: 29579 Source Name	Meathouse Fork @ Whiteh	air Withdrawal	Source Lat	itude: 39.2	211317
	Elton Whitehair		Source Long	itude: -80.	679592
	8888	oddridge	Anticipated withdrawal sta Anticipated withdrawal er Total Volume from Sour Max. Pump rate	nd date: ce (gal):	7/7/2014 7/7/2015 10,980,000 1,000
☐ Proximate PSD?			Max	. Simultaneous	Trucks: 0
☐ Gauged Stream?			Max. T	Truck pump rat	te (gpm) 0
Reference Gaug 31145	00 MIDDLE ISLAND CR	EEK AT LITTLE, WV	<u>.</u>		
Drainage Area (sq. mi.)	458.00		Gauge Thresh	old (cfs):	45

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	32.57	6.70	26.15
2	40.97	6.70	34.55
3	45.84	6.70	39.42
4	34.04	6.70	27.62
5	17.96	6.70	11.54
6	6.27	6.70	-0.15
7	3.55	5.70	-2.87
8	2.92	6.70	-3.50
9	1.50	6.70	-4.92
10	1.88	6.70	-4.54
11	9.18	6.70	2.76
12	22.43	6.70	16.01

Water Availability Profile

Water Availability Assessment of Location

Base Threshold (cfs):	2.98
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	2.81
Pump rate (cfs):	2.23
Headwater Safety (cfs):	0.75
Ungauged Stream Safety (cfs):	0.75
Min. Gauge Reading (cfs):	69.73
Passby at Location (cfs):	7.29

WMP-01571

API/ID Number:

047-017-06397

Operator:

Antero Resources

McMillan Unit 1H

Source ID:

29580

Source Name Tom's Fork @ Erwin Withdrawal John F. Erwin and Sandra E. Erwin

Source Latitude: 39.174306

HUC-8 Code:

5030201

Anticipated withdrawal start date:

Drainage Area (sq. mi.):

County:

Doddridge

7/7/2014

Endangered Species?

✓ Mussel Stream?

Anticipated withdrawal end date:

7/7/2015

Trout Stream?

Total Volume from Source (gal):

Max. Truck pump rate (gpm)

Source Longitude: -80.702992

10,980,000

☐ Tier 3?

3114500

Max. Pump rate (gpm):

1,000

Regulated Stream?

Max. Simultaneous Trucks:

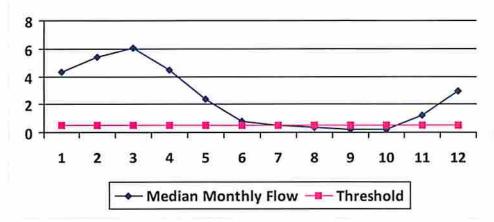
0

Proximate PSD? Gauged Stream?

MIDDLE ISLAND CREEK AT LITTLE, WV

Reference Gaug

Drainage Area (sq. mi.)

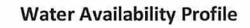

458.00

Gauge Threshold (cfs):

45

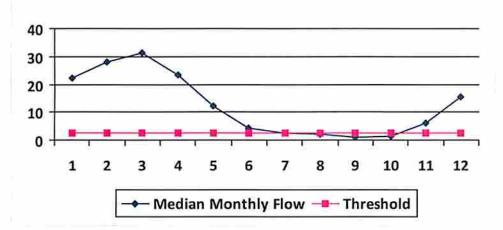
Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	4.30	2.82	1.88
2	5.41	2.82	2.98
3	6.05	2.82	3.63
4	4.49	2.82	2.07
5	2.37	2.82	-0.05
6	0.83	2.82	-1.60
7	0.47	2.82	-1.96
8	0.39	2.82	-2.04
9	0.20	2.82	-2.23
10	0.25	2.82	-2.18
11	1.21	2.82	-1.21
12	2.96	2.82	0.54

Water Availability Profile


Water Availability Assessment of Location

Base Threshold (cfs):	0.39
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	2.23
Headwater Safety (cfs):	0.10
Ungauged Stream Safety (cfs):	0.10
Min. Gauge Reading (cfs):	69.73
Passby at Location (cfs):	0.59

[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.


WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H 29581 Arnold Creek @ Davis Withdrawal Source ID: Source Name Source Latitude: 39.302006 Jonathon Davis Source Longitude: -80.824561 HUC-8 Code: 5030201 Anticipated withdrawal start date: 7/7/2014 Drainage Area (sq. mi.): 20.83 Doddridge County: Anticipated withdrawal end date: 7/7/2015 **Endangered Species?** ✓ Mussel Stream? Total Volume from Source (gal): 10,980,000 Trout Stream? ☐ Tier 3? 1,000 Max. Pump rate (gpm): Regulated Stream? Proximate PSD? Max. Simultaneous Trucks: 0 Gauged Stream? Max. Truck pump rate (gpm) 0 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Reference Gaug

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	22.34	5.30	17.29
2	28.10	5.30	23.05
3	31.44	5.30	26.39
-4	23.35	5.30	18.30
5	12.32	5.30	7.26
6	4.30	5.30	-0.75
7	2.43	5.30	-2.62
8	2.00	5.30	-3.05
9	1.03	5.30	-4.03
10	1.29	5.30	-3.76
11	6.30	5.30	1.25
12	15.39	5.30	10.34

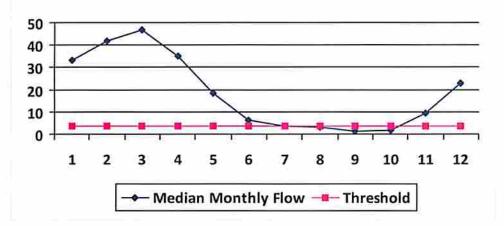
458.00

Drainage Area (sq. mi.)

Water Availability Assessment of Location

Gauge Threshold (cfs):

45

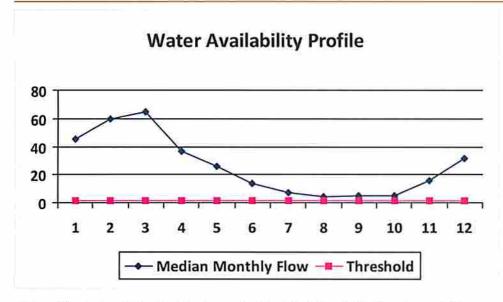

Pump rate (cfs): Headwater Safety (cfs):	2.23 0.51
Ungauged Stream Safety (cfs):	0.51

Passby at Location (cfs): 3.07

WMP-01571 API/ID Numb	er: 047-017-06 IcMillan Unit 1H	397 Operator: Antero I	Resources
Source ID: 29582 Source Name Buckeye Creek @ Pow Dennis Powell	vell Withdrawal	Source Latitude: 39.	
HUC-8 Code: 5030201 Drainage Area (sq. mi.): 31.15 County: □ Endangered Species?	Doddridge	Anticipated withdrawal start date: Anticipated withdrawal end date: Total Volume from Source (gal): Max. Pump rate (gpm): Max. Simultaneon	
Reference Gaug 3114500 MIDDLE ISLAN Drainage Area (sq. mi.) 458.00	ID CREEK AT LITTLE,	WV Gauge Threshold (cfs):	45

Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
33.41	6.82	26.95
42.02	6.82	35.56
47.02	6.82	40.56
34.92	6.82	28.46
18,42	6.82	11.96
6.43	6.82	-0.03
3.64	6.82	-2.82
3.00	6.82	-3.46
1.53	6.82	-4.92
1.93	6.82	-4.53
9.42	6,82	2.96
23.01	6.82	16.55
	monthly flow (cfs) 33.41 42.02 47.02 34.92 18.42 6.43 3.64 3.00 1.53 1.93 9.42	monthly flow (+ pump (cfs) 33.41 6.82 42.02 6.82 47.02 6.82 34.92 6.82 6.82 6.43 6.82 6.43 6.82 3.64 6.82 3.00 6.82 1.53 6.82 1.93 6.82 9.42 6.82

Water Availability Profile


Water Availability Assessment of Location

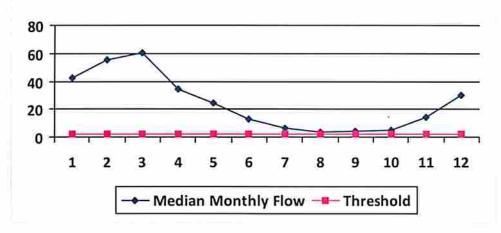
Min. Gauge Reading (cfs): Passby at Location (cfs):	69.73 4.59
Ungauged Stream Safety (cfs):	0.77
Headwater Safety (cfs):	0.77
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	3.06

Source Detail

WMP-01571	API/ID Numbe	047-017-06397	7 Operator: Ante	ro Resources
1	M	cMillan Unit 1H		
ource ID: 29583 Source Name	South Fork of Hughes I	River @ Knight Withdra	awal Source Latitude:	39.198369
	Tracy C. Knight & Stepl	hanie C. Knight	Source Longitude:	-80.870969
Drainage Area (sq. mi.): Endangered Species?	16.26 County: Aussel Stream? ier 3?	Ritchie	Anticipated withdrawal start date Anticipated withdrawal end date Total Volume from Source (gal) Max. Pump rate (gpm)	7/7/2015 10,980,000
Proximate PSD?			Max. Simulta	neous Trucks: 0
✓ Gauged Stream?			Max. Truck pur	mp rate (gpm) 0
Reference Gaug 315	5220 SOUTH FORK F	HUGHES RIVER BELOW	MACFARLAN, WV	
Drainage Area (sq. mi.)	229.00		Gauge Threshold (cf	s): 22

Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)
1	45.67	14.26	31.44
2	59.55	14.26	45.31
3	65.21	14.26	50.97
4	36.87	14.26	22.63
5	25.86	14.26	11.63
6	13.90	14.26	-0.33
7	6.89	14.26	-7.34
8	3.98	14.26	-10.25
9	4.79	14.26	-9.45
10	5.20	14.26	-9.04
11	15.54	14.26	1.30
12	32.06	14.26	17.82

39.80
0.00
0.39
6.68
0.00
5.62
1.56


"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

Source Detail

WMP-01571 API/ID Number: 047-017-06397 Operator: Antero Resources McMillan Unit 1H Source ID: 29584 North Fork of Hughes River @ Davis Withdrawal Source Name Source Latitude: 39.322363 Lewis P. Davis and Norma J. Davis Source Longitude: -80.936771 5030203 HUC-8 Code: Anticipated withdrawal start date: 7/7/2014 Ritchie Drainage Area (sq. mi.): 15.18 County: Anticipated withdrawal end date: 7/7/2015 **Endangered Species?** ✓ Mussel Stream? Total Volume from Source (gal): 10,980,000 Trout Stream? ☐ Tier 3? Max. Pump rate (gpm): 1,000 Regulated Stream? Proximate PSD? Max. Simultaneous Trucks: Gauged Stream? Max. Truck pump rate (gpm) 3155220 SOUTH FORK HUGHES RIVER BELOW MACFARLAN, WV Reference Gaug 229.00 Drainage Area (sq. mi.) Gauge Threshold (cfs): 22

Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)	
1	42.64	4.42	38.36	
2	55.59	4.42	51.32	
3	60.88	4.42	56.60	
	34.42	4.42	30.14	
5	24.15	4.42	19.87	
6	12.98	4.42	8.70	
7	6.44	4.42	2.16	
8	3.72	4.42	-0.56	
9	4.47	4.42	0.19	
10	4.85	4.42	0.57	
11	14.50	4.42	10.23	
12	29.93	4.42	25.65	

Water Availability Profile

Water Availability Assessment of Location

Passby at Location (cfs):	2.19
Min. Gauge Reading (cfs):	35.23
Ungauged Stream Safety (cfs):	0.36
Headwater Safety (cfs):	0.36
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	1.46

"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

west virginia department of environmental protection

Water Management Plan: **Secondary Water Sources**

WMP-01571

API/ID Number

047-017-06397

Operator:

Antero Resources

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Lake/Reservior

Source ID: 29589 Source Name

City of Salem Reservior (Lower Dog Run)

Source start date:

7/7/2014

Public Water Provider

Source end date:

7/7/2015

Source Lat:

39.28834

Source Long:

-80.54966

County

Harrison

Max. Daily Purchase (gal)

1,000,000

Total Volume from Source (gal):

10,980,000

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 29590 Source Name Pennsboro Lake

Source start date:

7/7/2014

Source end date:

7/7/2015

Source Lat:

39.281689

Source Long: -80.925526

County

Ritchie

Max. Daily Purchase (gal)

Total Volume from Source (gal):

10,980,000

DEP Comments:

Source ID: 29591 Source Name

Powers Lake (Wilderness Water Park Dam)

Source start date:

7/7/2014

Private Owner

Source end date:

7/7/2015

Source Lat:

39.255752

Source Long: -80.463262

County

Harrison

Max. Daily Purchase (gal)

Total Volume from Source (gal):

10,980,000

WMP 01571 API/ID Number 047-017-06397 Operator: Antero Resources

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 29592 Source Name Powers Lake Two Source start date: 7/7/2014

Source end date: 7/7/2015

Source Lat: 39.247604 Source Long: -80.466642 County Harrison

Max. Daily Purchase (gal) Total Volume from Source (gal): 10,980,000

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- · For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Other

Source ID: 29593 Source Name

Poth Lake (Landowner Pond)

Source start date: Source end date:

7/7/2014 7/7/2015

Private Owner

39.221306

-80.463028

County

Harrison

Max. Daily Purchase (gal)

Total Volume from Source (gal):

10,980,000

DEP Comments:

Source ID: 29594 Source Name

Source Lat:

Williamson Pond (Landowner Pond)

Source start date:

7/7/2014

Source end date:

7/7/2015

Source Lat:

39.19924

Source Long:

Source Long:

-80.886161

County

Ritchie

Max. Daily Purchase (gal)

Total Volume from Source (gal):

10,980,000

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 29595 Source Name Eddy Pond (Landowner Pond)

Source start date:

Source end date:

7/7/2014 7/7/2015

Source Lat:

39.19924 Source Long:

-80.886161

County

Ritchie

Max. Daily Purchase (gal)

Total Volume from Source (gal):

10,980,000

DEP Comments:

Source ID: 29596 Source Name

Hog Lick Quarry

Source start date:

7/7/2014

Industrial Facility

Source end date:

7/7/2015

Source Lat:

39.419272

Source Long:

-80.217941

County

Marion

Max. Daily Purchase (gal)

1,000,000

Total Volume from Source (gal):

10,980,000

WMP 01571 API/ID Number 047-017-06397 Operator: Antero Resources

McMillan Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

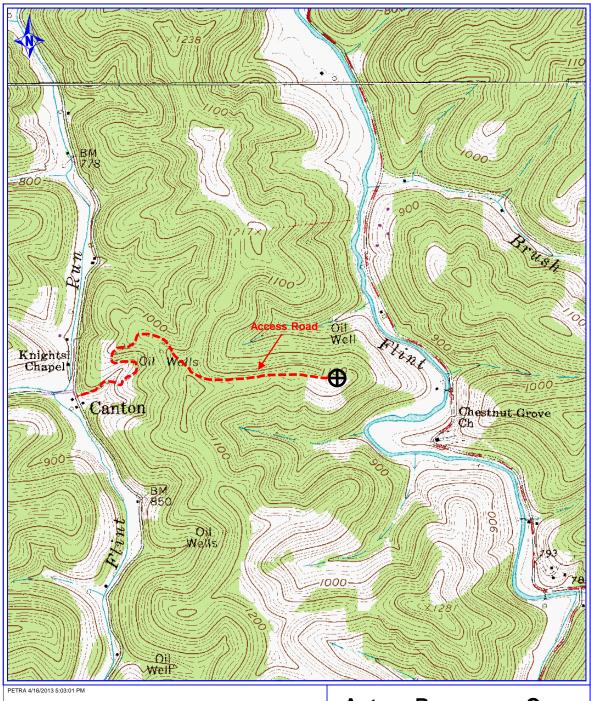
- For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

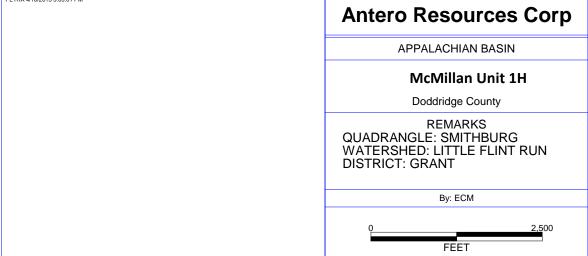
Source ID: 29597 Source Name Glade Fork Mine Source start date: 7/7/2014
Industrial Facility Source end date: 7/7/2015

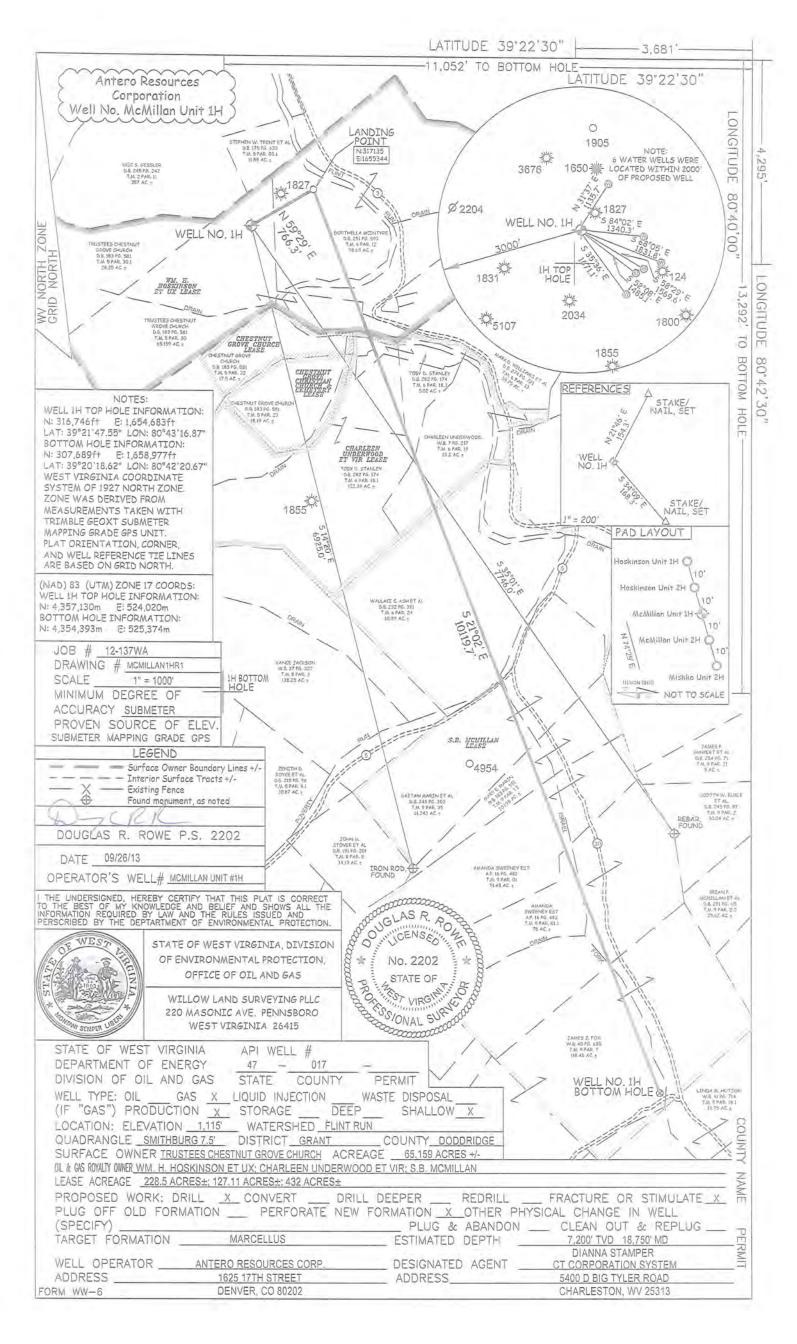
Source Lat: 38.965767 Source Long: -80.299313 County Upshur

Max. Daily Purchase (gal) 1,000,000 Total Volume from Source (gal): 10,980,000

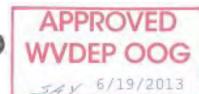
DEP Comments:


Recycled Frac Water


Source ID: 29598 Source Name Various Source start date: 7/7/2014
Source end date: 7/7/2015


Source Lat: Source Long: County

Max. Daily Purchase (gal) Total Volume from Source (gal): 10,980,000


DEP Comments: Sources may include, but are not limited to: Chadwell Unit 1H

CHESTNUT DRILL PAD SITE FINAL SITE DESIGN, CONSTRUCTION PLAN, AND EROSION & SEDIMENT CONTROL PLANS

ANTERO

PAD

ANTERO RESOURCES APPALACHIAN CORPORATION

Electronic Version of Plans Can Be Viewed at: Q\OIL GAS\SAY FILES\REVIEWS

BEGH ENTRANCE ROAD

MAIL C. PRAFF (PAR. 10)

WZE A PRAYTIPAR 190

DAZNE F. PRATT TRAK, 500

THE REPORT OF PARTY AND METERS

THES CHESTAGE ORDING CHARGES ON S. 30 ST

NOTE: A PORTION OF THE YOTAL LOD WAS ADCOUNTED

FOR INTHERUSIMEN PAD SITE DESIGN.

PRO.	IECT I	nea	TICIN	

79-51-44 2338

LATURIOE LOSSISTINE

3.40

9.00

@ D0 0.00 3.70

-90-44-01-897

1 1 Idilis	Cuil Be v	Tewed at. Q	OIL OILD D
90		Anna .	
	Special At the Control	• CHESTNUT	The contract of
NEF"	1 m		NO.
L) a		and the same of th	Water 1
	- 3		A DIEGOTO

WIATERSHED (HUCES:	AUTTER	MUSICINGUM-MIDDLE	£ (5)

08 202 PAGE 227

31.42

TAM 5 PARCO 20 GRANT DISTRICT

AFFECTED TAX PARCELS:

DRILLPAD

MINCHE PAC

MAIN ACCESS ROAD TO PAD MAD TRUCK TURNOUTS

SMITHBURG 7.5 QUAD DENZIL F. PRATT GENZIL F. PRATT DENZIL F. PRATT

DESCRIPTION

DB 245 PAGE 324 TM 5 PARCEL 9 TM 5 PARCEL IN THIS PARCEL ID

ECET.

1,505,87

1,262.13

SCALE 1" = 2000' GROVE CHURCH **SHOVE CHURCH** THAS PARCEL TO TIM 5 PARCES, 90.1

STREAM IMPACT	
DESCRIPTION	LINEAR PEET
RPW PEREMINAL	- 0
NETW ENGLISHERAL	. 6
PEM WETLANDS	D
RPW INTERMITTENT	0
TOTAL	σ

HOTEL	ALL STREAM IN	MCT8	WERE ADDOUNTE
	FOR IN THE RA	BANTH	PAD SHE DESIGN

TOTAL	(10.16)			in comme
TOTAL WOODED	18.50	TOTAL	4,638	TOTAL
NOTE: A PONTION OF THE TOT FOR IN THE RUSHITH	TAL LOD WAS ACCOUNTED	1		NOTE: 4
* *	-	1	.200	W.
A	/	(1)	18 m 1	25
N N	/- 001	92	1	16
- 1	(P)		200	1
1	/ 1	100	0	M
(e)	- A	200	- 10 mg	4.
1	1 3 18	6	(0)	A
1	1	1	10	
aldi	7	3 00/		6.
1	The said	and the state of	111	00 1
(2)		CHIST	NOTE OF	160
1.6	1 - 6	1. 0	The Me	20 -
18 .	1 20	-	1 Colorente	(1)
15 = See	- N (24)	Carton	98 0 Am	- Con
least of	1000	4	15	v#
2	W. T	H I	46	A Marie
12	(2) (20) II		100 Cm 1	1
	18/20	and a	100	Lynn
10	G	R .º	A I	4
(n)		1.	12	3 1
100 0	CBS 9:	1	(30)	1

	III BICRINI	EAST	CATALOGE	DOMESTUDE
HILTHU ANHAM	216775,9748	16078222.0460	89:21-47.7800	-80-43-19.4640
MACHINA MACAINAM	kos7misses	1623032 8404	36-21-47 80/49	86-43-15.3020
MARLLAN UND TH	140701.0207	10/29542 25/3	39-21-47-8524	-60-45-18:3409
HOSK RUSCH LINT DIE	211793.9011	16(2)(51,670)	20-21-47,0001	(6),43,16,110
ROSHINGOVILBUT IN	2/97/00/07/8	V62309 L6067	39-33-47,0073	-83-43-15,9880

THREE PADELES WEIGHT HAS TO

WELL LOCATION RESTRICTIONS

-1000 OF SURFACE OR GROUND WATER STAKE TO A PUBLIC WATER SUPPLY

THE PAD COMPLES WITH THE FOLLOWING RESTRICTIONS

-210 FROM AN EXISTING WELL OR DEVELOPED SPRING LISTS FOR HUMAN OR BIOMESTIC MINIMALS. 42Y FROM AN OCCUPIED OWILLING ON BARN GREATER THAN SMEET USED FOR POLITRY OR DARK SHASLINED PROM THE CHITER OF THE PAGE

HAY FROM EDGE OF DISTURBANCE TO WETLANDS, PERENWAL STREAMS, HATLINAL OR ARTIFICIAL LAND. MET FROM EDGIC OF DISTURBANCE TO WATCHWALLY REPRODUCING TROUT STREAMS

FLOODPLAI	N CONDITIONS	
BO S TE CONSTRUCTION ACTIVITIES TAKE PLACE IN PLOCOPLAIN		110
PERMIT NEEDED FROM COOKIY FLO	HINT RESIDED FROM COUNTY FLOCIFICATI COORDINATOR:	
EC AAS STUDY COMPLETED		HW
FLOCOPLAN BIKWIN ON DRAWHISS	COPLAN SHAWS ON DRAWING	
TIGHT WAT HUMBEREDS FIRST WITE:	\$400000mg	
ALREAGES OF CONSTRUCTION W/I	SEASES OF CONSTRUCTION INFLOCIONAR	

COVER PARE & LOCATION MAP	1.1
SCHEDULE OF DUANTITIES	- 1
CONSTRUCTION, GENERAL AND EXENOTES	.21
EXISTING CONSTIGNS MAN	
OVERMA SITE PLAN	. 5
EROSION & SEDIMENT DON'THOU PLAN	50
FINAL SITE DEBIGN	10-13
DRILL PAD PROPILE & CHOOS-SECTIONS	19
HOAD PROFILES:	15.8
PAD NOAD DROSS-SECTIONS	17-5
CONSTRUCTION DETAILS	31-6
TRECLAVATION PLATE	39.8

DEBINN CERTIFICATION

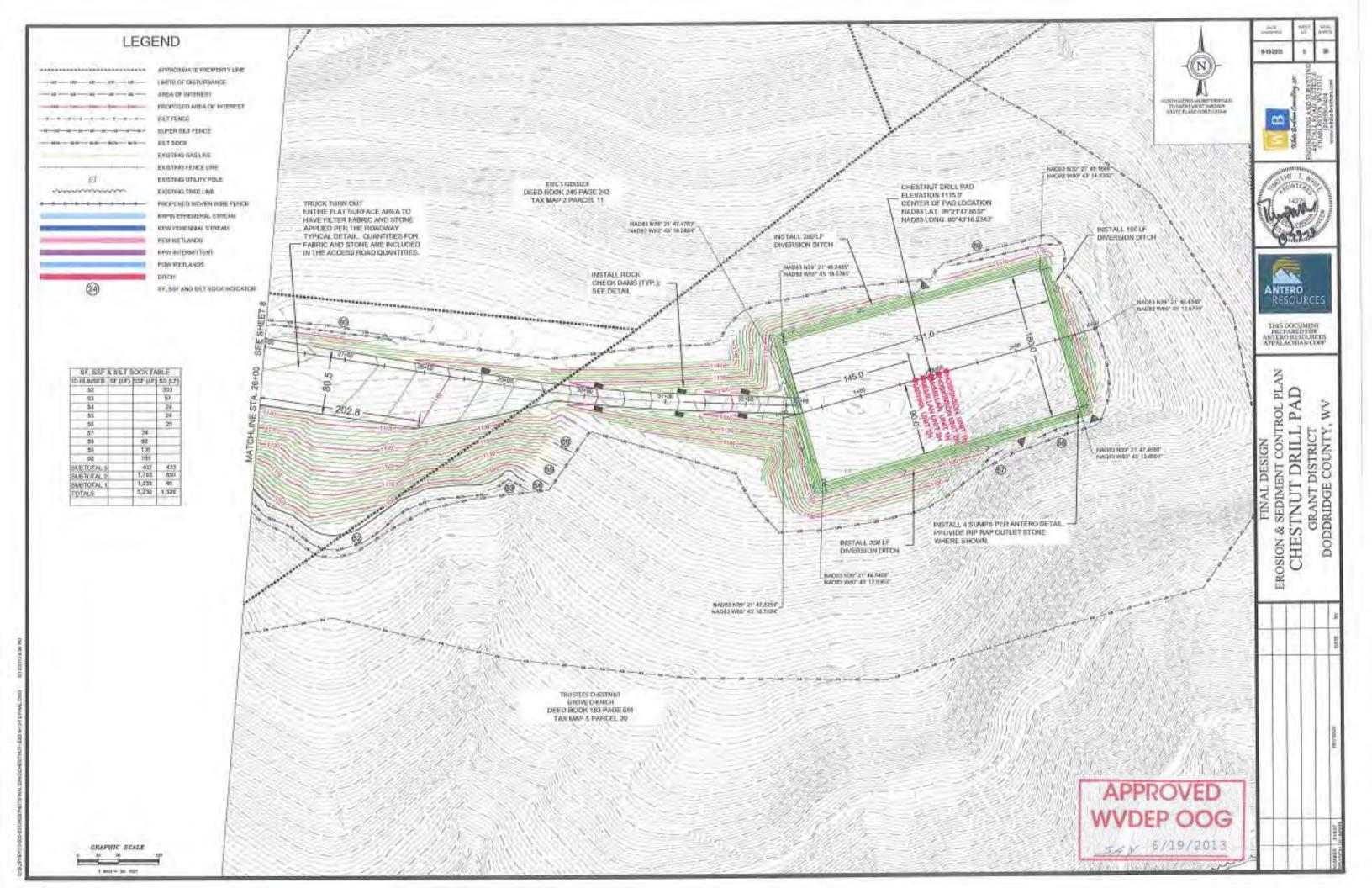
THE DRAWINGS, CONSTRUCT ON HOTES, AND REFERENCE DIAGRAMS ATTACHED MERG TO HAVE KEEN PREPARED IN ACCORDING EWITH THE WEST VIRGINIA CODE OF STATE RULES, DIVISION OF ENVIRONMENTAL PROTECTION OFFICE OF OIL AND GAS \$35421.

ANTERIO RESOURCES WILL OFFICE AN ENCROADMENT PERMIT (MIL-180) PROM THE WEST VIRGINIA DEPARTMENT OF TRANSPORTATION, COVISION OF HISHWAYS PROGRAM THE COMMENCEMENT OF CONSTRUCTION ACTIVITIES.

1200	REST CONT	MC13_
Oyto	END RESON	F4.E9
Skri	HOW SMITH	H, FIELD ENGAGE
2044	109-3485 OF	FICE
504-4	73-8195 CZ	DL.

EU WIGOVER, ENVIRONMENTAL ENGINEER SOLISSESSMENT EXT. SH CETTICE SHAPITS-STAT

JOHN KAWCAK, ENGINEER


AMBON HUNZLER, CONSTRUCTION SUPERVISOR, 405-277-8344

WHETE PROTHERS CONSULTING LLC. LEE SHYDER, P.S. 304-850-0484 TRIGITITY T. WHITE, P.E.

MISS UTILITY OF WEST VIRGINIA 1-800-245-4848 WEST VIRGINIA STATE LAW REQUIRES THAT YOU CALL TWO BUSINESS DAYS BEFORE YOU DIG IN THE STATE OF

Know what's below. Call before you dig.

