Sh

WR-35 Rev (9-11)

State of West Virginia Department of Environmental Protection Office of Oil and Gas Well Operator's Report of Well Work

DATE:	10/25/2013	
API #:	47-017-06255	

Farm name: Powell, Dennis H. & Mellie	Operator Well No.: Connie Unit 1H Quadrangle: Smithburg 7.5'					
OCATION: Elevation: 881'						
District: Grant	County: Doddridge					
Latitude: 6,930' Feet South of 39 Deg.	17 Min.		c.			
Longitude 5.659' Feet West of 80 Deg.	Min.	oo Se	c.			
Company: Antero Resources Corporation						
Address: 1625 17th Street	Casing & Tubing	Used in drilling	Left in well	Cement fill up Cu. Ft.		
Denver, CO 80202	20" 106.50#	40'	40'	60 Cu. Ft. Class A		
Agent: CT Corporation System	13 3/8" 48#	419'	419'	582 Cu. Ft. Class A		
Inspector: Douglas Newlon	9 5/8" 36#	2,665'	2,665'	1085Cu. Ft. Class A		
Date Permit Issued: 5/8/2013	5 1/2" 20#	13,701'	13,701'	3310 Cu. Ft. Class F		
Date Well Work Commenced: 5/23/2013						
Date Well Work Completed: 9/19/2013	2 3/8" 4.7#	6,867'				
Verbal Plugging: N/A						
Date Permission granted on: N/A						
Rotary Cable Rig						
Total Vertical Depth (ft): 6,795' TVD						
Total Measured Depth (ft): 13,694' MD	6					
Fresh Water Depth (ft.): 103'						
Salt Water Depth (ft.): 1216'	-					
Is coal being mined in area (N/Y)? No						
Coal Depths (ft.): 154', 236' 273'			100			
Void(s) encountered (N/Y) Depth(s) None			1			
Gas: Initial open flow — MCF/d Oil: Initial open flow Final open flow 4,180 MCF/d Final open flow Time of open flow between initial and final tests — Static rock Pressure 3550 psig (surface pressure) af	zone depth (ft) 6. low Bbl	513' (TOP) ol/d //d s	ata on separate s	sheet)		
Final open flowMCF/d Final open flow						
Time of open flow between initial and final tests						
Static rock Pressurepsig (surface pressure) af	terHour	S				

I certify under penalty of law that I have personally examined and am familiar with the information submitted on this document and all the attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information I believe that the information is true, accurate, and complete.

Signature

Date

Were core samples taken? YesNo_	X Were	cuttings caught during drilling	? YesNo_X
Were Electrical, Mechanical or Geophysical This is a subsequent well. Antero only runs wireline logs on the first we	logs recorded on this well? I	f yes, please list Yes- CBL -06086). Please reference the wireline logs subm	itted with Form WR-35 for Neely Unit 1H.
FRACTURING OR STIMULATING, PI DETAILED GEOLOGICAL RECORD	HYSICAL CHANGE, ETC. OOF THE TOPS AND BO	2). THE WELL LOG WHI OTTOMS OF ALL FORM	CH IS A SYSTEMATIC
Perforated Intervals, Fracturing, or Stimulation	ing:		
Perforations: 6,909'-13,659' (2,040 h	Holes)		
Frac'd w/ 11,250 gals 15% HCL Acid	d, 188,661 bbls Slick Wa	ater carrying 545,830# 1	00 mesh,
4,357,095# 40/70 sand and 2,255,7	85# 20/40 sand.		
			
Plug Back Details Including Plug Type and	Depth(s): N/Δ		
	Electrical, Mechanical or Geophysical logs recorded on this well? If yes, please list Yes-CBL a subsequent well. Antero only runs wireline logs on the first well on a multi-well pad (Neely Unit 11 AP#47-017-08086). Please reference the wireline logs submitted with Form WR-35 for Neely Unit 11. TE: IN THE AREA BELOW PUT THE FOLLOWING: 1). DETAILS OF PERFORATED INTERVALS, ACTURING OR STIMULATING, PHYSICAL CHANGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMATIC FAILED GEOLOGICAL RECORD OF THE TOPS AND BOTTOMS OF ALL FORMATIONS, INCLUDING AL ENCOUNTERED BY THE WELLBORE FROM SURFACE TO TOTAL DEPTH. Drated Intervals, Fracturing, or Stimulating: Drations: 6,909'-13,659' (2,040 Holes) I'd w/ 11,250 gals 15% HCL Acid, 188,661 bbls Slick Water carrying 545,830# 100 mesh, 7,095# 40/70 sand and 2,255,785# 20/40 sand. Back Details Including Plug Type and Depth(s): N/A Back Details Including Plug Type and Depth(s): N/A		
	.		<u> </u>
Formations Encountered:	Top Depth	/	Bottom Depth
Surface:	oct 1 5711	2 221'	
_			
•		·	
		·	
	•		
•			
	•	•	
	-	•	
	· ·		
		-	
Sycamore			
·	-		
		6,407'	
Burkett	6,408'	6,436'	
Tully	6,437'	6,497'	
Hamilton	6,498'	6,512'	
Marcellus	6,513'	6,795' TVD	

Hydraulic Fracturing Fluid Product Component Information Disclosure

Job Start Date:	9/10/2013
Job End Date:	9/19/2013
State:	West Virginia
County:	Doddridge
API Number:	47-017-06255-00-00
Operator Name:	Antero Resources Corporation
Well Name and Number:	Connie Unit 1H
Longitude:	-80.69114440
Latitude:	39.27613060
Datum:	NAD27
Federal/Tribal Well:	NO
True Vertical Depth:	6,795
Total Base Water Volume (gal):	7,923,762
Total Base Non Water Volume:	2,084,036

Hydraulic Fracturing Fluid Composition:

Trade Name	Supplier	Purpose	Ingredients	Chemical Abstract Service Number (CAS #)	Maximum Ingredient Concentration in Additive (% by mass)**	Maximum Ingredient Concentration in HF Fluid (% by mass)**	Comments
Vater	Antero Resources	Base Fluid					
			Water	7732-18-5	100.00000	91.57503	
Sand	U.S. Well Services, LLC	Proppant					
			Crystalline Silica, quartz	14808-60-7	100.00000	8.14714	
HCL Acid (12.6%- 8.0%)	U.S. Well Services, LLC	Bulk Acid					
			Water	7732-18-5	87.50000	0.09334	
			Hydrogen Chloride	7641-01-1	18.00000	0.02230	
.GC-15	U.S. Well Services, LLC	Gelling Agents					
			Guar Gum	9000-30-0	50.00000	0.03444	
			Petroleum Distillates	64742-47-8	60.00000	0.03261	
			Suspending agent (solid)	14808-60-7	3.00000	0.00527	
			Surfactant	68439-51-0	3.00000	0.00207	
WFRA-405	U.S. Well Services, LLC	Friction Reducer					
			Water	7732-18-5	40.00000	0.02259	
			Anionic Polyacrylamide	Proprietary		0.02259	
			Petroleum Distillates	64742-47-8	22.00000	0.01818	
			Crystalline Salt	12125-02-9	5.00000	0.00282	

			Ethoxylated alcohol blend	Proprietary	5.00000	0.00282	
SI-1000	U.S. Well Services, LLC	Scale Inhibitor					
			Anionic Copolymer	Proprietary		0.00391	
			Ethylene Glycol	107-21-1	20.00000	0.00354	
			Water	7732-18-5	30.00000	0.00295	
C-BAC 1020	U.S. Well Services, LLC	Anti-Bacterial Agent					
			2,2-dibromo-3- nitrilopropionamide	10222-01-2	20.00000	0.00457	
			Deionized Water	7732-18-5	28.00000	0.00261	
AP One	U.S. Well Services, LLC	Gel Breakers					
			Ammonium Persulfate	7727-54-0	100.00000	0.00066	
AI-300	U.S. Well Services, LLC	Acid Corrosion Inhibitors					
1			Ethylene Glycol	107-21-1	31.00000	0.00024	
			N,N-Dimethylformamide	68-12-2	15.00000	0.00008	
			Tar bases, quinoline derivs, benzyl chloride-quaternized	72480-70-7	13.00000	0.00007	
			Cinnamaldehyde	104-55-2	5.00000	0.00007	
		0.00	2-Butoxyethanol	111-76-2	7.00000	0.00006	
			Water	7732-18-5	20.00000	0.00002	
		1	Ethoxylated Nonylphenol	68412-54-4	5.00000	0.00002	
			Triethyl Phosphate	78-40-0	3.00000	0.00001	
			sopropyl Alcohol	67-63-0	3.00000	0.00001	

Note: For Field Development Products (products that begin with FDP), MSDS level only information has been provided.
Ingredient information for chemicals subject to 29 CFR 1910.1200(i) and Appendix D are obtained from suppliers Material Safety Data Sheets (MSDS)

^{*} Total Water Volume sources may include fresh water, produced water, and/or recycled water
** Information is based on the maximum potential for concentration and thus the total may be over 100%